
1. Introduction
The critical zone (CZ—the terrestrial Earth's surface above the base of actively circulating groundwater) deter-
mines how forest ecosystems and streams will respond to drought, warming temperatures, and disturbances 
(Condon et al., 2020; Keller, 2019). Because of the high spatial and temporal variability of CZ structure and 
function, understanding the links and feedbacks among a myriad of CZ processes remains a challenge in Earth 
Science. Vegetation connects the atmosphere and the subsurface, and simultaneously responds to atmospheric and 
subsurface conditions. This interaction among plants and the surrounding environment exerts strong controls on 
hydrologic, geomorphic, and biogeochemical fluxes. Consequently, vegetation disturbance has important cascad-
ing impacts on the functioning of key CZ ecosystem services, including the provisioning of natural resources, 
erosion and weathering, biogeochemical cycling, and maintenance of biota over instantaneous to decadal time 
frames (Field et al., 2015; Green et al., 2019; Minor et al., 2020; Peterson et al., 2021; Rasmussen et al., 2015).

Montane forests in the western United States (US) provide important CZ services, including regulation of water, 
wildlife habitat, biodiversity, and carbon sequestration (Field et  al.,  2015). However, these forests are facing 
persistent and increasing pressures from climatic and human-driven disturbances. Monitoring and understanding 
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using new sensors and new platforms have improved observations of changes in vegetation canopy structure 
and productivity; however, integrating measures of forest disturbance from various sensing platforms is 
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Case studies in montane forests from the western United States highlight new opportunities, including 
evaluating post-disturbance forest recovery at multiple scales, shedding light on understory vegetation regrowth, 
detecting specific physiological responses, and refining ecohydrological modeling. Learning from regional 
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disturbance-driven changes to the forest ecosystems is challenging due to the complex spatio-temporal patterns 
involved. Montane forested ecosystems have large elevation gradients, with higher elevations being generally 
cooler and wetter than lower elevations, and corresponding shifts in vegetation composition adapted to those 
climate and CZ conditions. Higher biomass and more precipitation variability also make montane ecosystems 
more susceptible to chronic and acute disturbances, such as multi-year droughts (Clark et  al.,  2016; Young 
et al., 2017), extreme flooding (Anderson et al., 2015), insect outbreaks (Meddens et al., 2012), wildfire (Dennison 
et al., 2014), and expansion of the wildland-urban-interface (Radeloff et al., 2018). Complex topography (e.g., 
steep slopes and convergent areas) also leads to greater heterogeneity in climate and vegetation, thereby posing 
significant challenges in prediction of disturbance response. Disturbances are an important part of CZ evolution 
in forests and other ecosystems, altering the co-evolution of vegetation, subsurface properties, and water storage 
(Pelletier et al., 2013; Troch et al., 2015). The recent increases in intensity and spatial extent of wildfires and 
insect outbreaks have altered the CZ services in many montane forests that remain hard to monitor and predict 
(Bales et al., 2018; Mildrexler et al., 2016; Thorne et al., 2018).

Disturbance often changes the structure and composition of both above- and belowground ecosystems, which 
ultimately affects carbon and water budgets (Hicke et al., 2012; Keller, 2019; Williams et al., 2014). For example, 
high severity wildfire can remove much of the overstory biomass, whereas widespread tree die-off from drought, 
disease, and insects is likely to leave standing dead trees that can persist for decades (Stephens et al., 2018). 
Similarly, high-severity wildfire can reduce water storage by removing much of the organic matter from the soil 
surface and temporarily reducing infiltration capacity (Ebel, 2020; Ebel & Moody, 2017; Moody et al., 2019; 
Shakesby & Doerr, 2006). The vegetation succession and species change after disturbance will depend not only 
on local ecosystem resilience, but also on climate (Rother & Veblen, 2016, 2017) and on existing CZ structure 
(i.e., deep and porous soils vs. low subsurface storage) (Tague & Moritz,  2019). Over long periods of time, 
disturbance severity and return intervals can govern processes such as weathering fluxes, subsurface porosity 
development (Navarre-Sitchler et al., 2009, 2013, 2015), and surface erosion (Orem & Pelletier, 2015, 2016). One 
commonality across disturbance vectors for montane forests is an expectation that climate change will increase 
the occurrence, severity, and extent of disturbance (Dale et al., 2001; Loehman et al., 2017; Tague et al., 2019). 
For example, increasing air temperature and vapor pressure deficit (VPD) are expected to increase drought 
mortality, and weaken resistance to insects and disease (Hartmann et al., 2022). Similarly, warming climate and 
poor fuel management are expected to increase wildfire severity and extent into the mid-21st century (Abatzoglou 
& Williams, 2016). Future precipitation changes are highly uncertain, but increased warming is expected to drive 
atmospheric patterns that produce additional intense and extreme weather events (Mallakpour & Villarini, 2016) 
that will impact flood frequencies.

Satellite remote sensing platforms have served as the workhorse for forest change detection, with the ability 
to determine global forest loss (Hansen et  al.,  2010,  2013), land cover conversion (Curtis et  al.,  2018), and 
post-disturbance recovery of forest ecosystems (White et al., 2017). Chronic disturbance (e.g., drought), which 
needs regional observations with a long record of several decades, has benefited from continuous satellite-based 
spectral observations (e.g., Landsat and Moderate Resolution Imaging spectroradiometer; MODIS) (Frolking 
et al., 2009; Kennedy et al., 2012; Okin et al., 2018). Similarly, current research has used multi-decade satellite 
data to determine not only the type and extent of disturbance (Hislop et al., 2019; White et al., 2017), but also 
a wide variety of post-disturbance vegetation attributes such as forest structure, species composition and estab-
lishment (Bolton et al., 2015; Hermosilla et al., 2019; Matasci et al., 2018; Savage et al., 2017; Senf et al., 2019; 
Vanderhoof et al., 2021; White et al., 2018). Remote sensing platforms have also been used to assess the impact of 
human activities such as river and floodplain restoration through the re-introduction of beaver and the installation 
of beaver mimicry structures (i.e., beaver dam analogs) and other restoration approaches (Hausner et al., 2018; 
Melesse et al., 2007), highlighting human actions aimed at enhancing landscape resiliency in the CZ. However, 
many CZ processes that may be influenced by disturbance, occur at spatial and temporal scales that cannot be 
effectively captured with conventional coarse scale, multispectral remote sensing (e.g., Landsat has 30-m and 
MODIS has 500-m resolution). For example, the ability of forest structure mapping that can separate overstory 
and understory, identify species, and estimate evapotranspiration and productivity is still limited. At the same 
time, emerging remote sensing platforms and sensors have new capabilities to observe CZ response to distur-
bance at finer spatial and temporal scales.

The potential to utilize new sensing platforms has many benefits for understanding CZ response to disturbance 
that have yet to be fully realized (Figure 1). Higher-resolution observational capabilities from satellites, aircrafts, 
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and uncrewed aerial vehicles (UAVs), can fill this observational gap from 0.1 
m 2 to 1 km 2 that is critical to CZ processes and disturbance heterogeneity 
(Figure 1). Different disturbance types and intensities require different obser-
vation strategies in terms of resolution, extent, and repeatability (Figure 2). 
For example, higher-resolution observations from newer platforms (e.g., 
airborne, UAV, and ground) may be more effective for lower-intensity 
and smaller-extent disturbances that will have slower recovery. Similarly, 
more conventional remote sensing platforms (e.g., satellite) have evolved 
to increase spatial, temporal, or spectral coverage (Figure 2). For example, 
small, geostationary satellites are able to capture multispectral images at the 
scale of 50–200 cm (Frazier & Hemingway, 2021; Kimm et al., 2020). The 
fixed wing aircraft continues to remain critical to sensor technology that is 
not satellite ready (i.e., active energy sources) or where higher spatial reso-
lution is required. UAV platforms have become much more common with 
recent advances in sensors and reductions in sensor size and weight. At 
these scales, remote sensing can be effectively linked and verified with field 
observations for integrating subsurface and ecological processes that are not 
observable with satellite remote sensing. With these new platform technolo-
gies, experimental design trade-offs between spatio-temporal coverage, reso-
lution, and costs need to be considered for different disturbance extents and 
severity (Figure 2).

A suite of different sensing technologies exists or is near deployment that can be developed into a variety of data 
products relevant to CZ disturbance and vegetation recovery (Table 1), yet most are rarely utilized in a coordi-
nated way to monitor CZ disturbance. Remote sensing products across different sensor types can either supple-
ment data coverage (e.g., lidar, photogrammetry, and radar) (Qi et al., 2019) or relate estimated variables to extent 
and intensity of disturbance (e.g., imaging spectrometer and lidar) (Bolton et al., 2015; Kane et al., 2014; Meng 
et al., 2018; Viana-Soto et al., 2022; White et al., 2022). Importantly, co-located sensors in the same platform 
result in development of new algorithms to estimate new variables (e.g., canopy water content and biomass) that 
could only be acquired from destructive measurements previously (Asner et al., 2015; Paz-Kagan et al., 2018). 
However, these attempts are not producing reliable information for post-disturbance monitoring as they are lack-
ing thorough validation efforts.

Figure 1. Conceptual description of remote sensing applications in evaluating 
vegetation response to disturbances. Subpanels indicate different capabilities 
of remote sensing platforms (i.e., satellite, airborne, unmanned aerial vehicle, 
and ground) in quantifying CZ structure and inferring CZ processes across the 
spatial coverage: (a) catchment, (b) hillslope, (c) individual tree. The hillslope 
scale inset (b) presents post-disturbance vegetation succession stages with (1) 
pre-disturbance, (2) disturbed, (3) understory regrowth (grass/forb/shrub), (4) 
overstory regrowth to intermediate height. (image credit: Eric Parrish).

Figure 2. Conceptual diagrams of remote sensing capabilities in (a) extent, and (b) repeatability for disturbance evaluation. Different remote sensing platforms provide 
complementary spatio-temporal coverages that have varying suitability for disturbance type and intensities.
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In this focused review, we call attention to an opportunity in CZ science: how modern remote sensing platforms 
and sensors (Table 1, Figures 1 and 2) could advance our understanding of disturbance impacts and recovery 
across scales. Although disturbances have been studied for decades (Frolking et al., 2009; Huang et al., 2019; 
Jiao et al., 2021; Senf et al., 2017; Szpakowski & Jensen, 2019), the quality of remote sensing has reached a 
threshold that can better inform our predictive models. However, integration of different remote sensing datasets 
and platforms, coordination with field observations, and experimental design remain key challenges. Several 
knowledge gaps persist including the assessment of CZ changes and their drivers/impacts, and elucidating how 
disturbance impacts carbon and water storage and fluxes (Bloschl et  al., 2019). Specifically, montane forests 
need better predictions of post-disturbance changes in CZ services such as carbon sequestration, water supply 
and quality, and risk mitigation for people and property. We focus on three topics relevant to the CZ science and 
remote sensing communities:

1.  How can we improve our evaluation of disturbance extent and severity over different time periods following 
disturbance?

2.  What combination of sensors, platforms, and data fusion will most improve the characterization and modeling 
of the post-disturbance CZ processes?

3.  How can resources be mobilized and coordinated to apply better remote sensing observations following 
disturbance?

Sensor type Direct observation Derived quantity

Disturbance evaluation

Flooding Wildfire
Harvest/
thinning Drought

Insect/
pathogen

Spectral Imaging Spectral traits of land 
surface

Land cover classification O O O

Surface moisture index O

Snow albedo, snow aridity index O O O O

Burn severity index, burn ratio O

Spectral traits of 
vegetation canopy

Fraction of absorbed photosynthetically active radiation O

Vegetation index O O O O

Tree health/mortality O O

Desease/infestation stage O

Physiological stress O

Lidar and 
Photogrammetry

Land surface 
elevation

Sediment yield, erosion/deposition O O

Snow cover/depth O O O O

Vegetation structure Vegetation height/density, species composition, wood 
volume, basal area, diameter at breast height, species 
type, canopy size

O O

Thermal Sensing Land surface 
temperature

Soil surface temperature O O

Land surface energy balance O O O O

Leaf surface 
temperature

Evapotranspiration O O O O

Stomatal conductance, vegetation water stress O

Radar Vegetation structure Aboveground/underground biomass, forest carbon storage O O O O

Foliage volume O O

Water content Soil/vegetation water content O

Snow water equivalent O O O O

Table 1 
Observational Capabilities of Remote Sensing Sensors in Disturbance Assessment
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Our primary focus is to explore sensor-platform combinations that can transform our understanding of CZ 
response, with the goal of highlighting how new sensor technologies can contribute to advances in our knowl-
edge. Section  2 briefly reviews recent remote sensing applications for disturbance evaluation using different 
sensor-platform combinations. Our aim is to analyze the strengths and weaknesses of these combinations and 
identify the most effective approaches for tracking individual disturbance types. Section 3 presents five prevail-
ing disturbance cases from the western montane forests that demonstrate how both old and new sensor-platform 
combinations are utilized for different spatio-temporal scales and disturbance types. These case studies iden-
tify effective methods for evaluating CZ processes. Finally, based on the knowledge gained from these studies, 
Section 4 presents a vision for leveraging these advances, in combination with current observation capabilities, 
to enhance our understanding of CZ processes.

2. Sensors and Platforms for Observing CZ Disturbance
A suite of remote sensing platforms and sensors can provide snapshots of CZ structure useful for inferring 
processes at multiple spatio-temporal scales. Compared to mature and obsolete missions, cutting-edge platforms 
and sensors from recently launched and upcoming missions facilitate improved observations with enhanced reso-
lutions of space, time, and wavelength/bandwidth (Table 2). Opportunities exist to evaluate transferability of the 
new platforms and sensors including (a) more specific wavelength/bandwidth combinations to measure vegeta-
tion attributes that were not detected before, (b) existing algorithms to be either used or refined to retrieve vari-
ables in greater detail, and (c) spatial scales and temporal intervals to best describe CZ processes and vegetation 
responses (Table 1). In this section, we review platforms (i.e., satellite, airborne, UAV, ground) and sensor types 
(i.e., spectral imaging, lidar and photogrammetry, thermal sensing, radar) associated with recent advances and 
how they were used to address ecosystem response to environmental disturbances. Strengths and weaknesses of 
each platform and sensor are discussed with examples of how these are used to evaluate post-disturbance forest 
changes.

2.1. Satellite-Based Sensors

Satellite remote sensing with more than 50 years of regular data acquisition across the globe has great value in 
assessment of disturbance. This data is uniquely useful in disturbance-prone areas that lack any in-situ or airborne 
measurements. A wide variety of sensor instruments have recorded the land surface over five decades, along 
with dozens of pioneering missions (Lettenmaier et al., 2015). Non-commercial satellite datasets are publicly 
available with standardized image process and centralized data management through dedicated agencies, includ-
ing National Aeronautics and Space Administration (NASA) and the US Geological Survey (USGS). Despite 
advances in platform and sensor technologies, relatively low-resolution images still constrain small scale obser-
vations (e.g., from leaf to tree scale) (Table 2).

Platform Mission name
Temporal 
coverage

Spatial 
resolution

Overpass 
interval Sensor type (Band width)

Observational capability

Geomorphology
Forest 

structure Physiology Hydrology

Satellite Landsat 1972–present 30 m 16 days Multispectral (VIS-MIR), 
TIR

O O

MODIS 2000–present 250, 500, 
1,000 m

1 day Multispectral (VIS-MIR), 
TIR

O O

SPOT 2012–present 1.5, 6 m 1–5 days Multispectral (VIS, NIR) O

Sentinel-2 2015–present 10, 20, 60 m 10 days Multispectral (VIS-NIR, 
SWIR)

O

PlanetScope 2016–present 3 m 1 day Multispectral (VIS, NIR) O

WorldView-4 2016–present 1.24 m 1 day Multispectral (VIS, NIR) O

Table 2 
Specifications of Satellite and Airborne Remote Sensing Missions in Forest Disturbance Evaluation
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Platform Mission name
Temporal 
coverage

Spatial 
resolution

Overpass 
interval Sensor type (Band width)

Observational capability

Geomorphology
Forest 

structure Physiology Hydrology

Hyperion 2000–2017 30 m 16–30 days Hyperspectral (220 bands in 
357–2,576 nm)

O

VIIRS 2011–present 375, 750 m 16 days Hyperspectral (22 bands in 
0.412–12.01 μm)

O

HISUI 2019–present 20, 30 m 33 days Hyperspectral (185 bands in 
400–2,500 nm)

O

PRISMA 2019–present 5, 30 m 29 days Hyperspectral (238 bands in 
400–2,500 nm)

O

EnMAP 2022–present 30 m 4 days Hyperspectral (230 bands in 
420–2,450 nm)

O

HyTI 2022 (planned) 60 m 6U Cubesat Hyperspectral (25 bands in 
8–10.7 μm), TIR

O O

SBG 2022 (planned) 30, 60 m 5, 19 days Hyperspectral (210 bands in 
350–2,510 nm), TIR

O O

FLEX 2025 (planned) 300 m 27 days Hyperspectral (>250 bands 
in 500–780 nm)

O

CHIME 2029 (planned) 20, 30 m 10–12.5 days Hyperspectral (400–2,500 
nm)

O

HiTeSEM Planned 20, 60 m 5 days Hyperspectral (75 bands in 
7.2–12.5 μm), TIR

O O

ICESat 2003–2010 70 m 8 days Lidar O O

ICESat-2 2018–present 20 m 91 days Lidar O O

GEDI 2019–present 25–1,000 m 4 days Lidar O O

ECOSTRESS 2018-present 30, 70 m 1–7 days TIR, SWIR O O

Envisat 
ASAR

2002–2012 30–150 m 35 days Radar (C band) O

Sentinel-1 2014–present 5 m 12 days Radar (C band) O

ALOS-
PALSAR

2006–2011 10–100 m 46 days Radar (L band) O

ALOS-2 
PalSAR

2014–present 3–10 m 14 days Radar (L band) O

NISAR 2023 (planned) 5–10 m 5–8 days Radar (L band, S band) O

BIOMASS 2023 (planned) 200 m 3 days Radar (P band) O

TerraSAR-X 2008–present 16 m 2–3 days Radar (X band) O

TanDEM-X 2010–present 1–16 m 11 days Radar (X band) O

GRACE 2002–2017 300–400 km 30 days Radar (K band) O

GRACE-FO 2018–present 300–400 km 30 days Radar (K band) O

QuikSCAT 
SeaWinds

1999–2018 25 km 4 days Radar (Ku band) O

SWOT 2023 (planned) 50 m 21 days Radar (Ka band, Ku band, 
microwave)

O

AMSR-E 2002–2016 4–43 km 1–2 days Radar (microwave) O

AMSR-2 2012–present 3–35 km 1 day Radar (microwave) O

SMAP 2015–present 1–3 km 2–3 days Radar (microwave) O

Table 2 
Continued
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Platform Mission name
Temporal 
coverage

Spatial 
resolution

Overpass 
interval Sensor type (Band width)

Observational capability

Geomorphology
Forest 

structure Physiology Hydrology

Airborne MASTER 1998–present 5–50 m - Multispectral (VIR-MIR), 
TIR

O O

NAIP 2003–present 1 m - Multispectral (VIS, NIR) O

AVIRIS 1986–present 20 m - Hyperspectral (224 bands in 
400–2,400 nm)

O

AVIRIS-NG 2014–present 0.3, 4 m - Hyperspectral (600 bands in 
380–2,510 nm)

O

NCALM 2003–present 0.2 m - Lidar, VIS O O O

GAO 2006–present 0.25–2 m - Lidar, Hyperspectral (>400 
bands in 380–2,510 nm)

O O O

G-LiHT 2011–present 1 m - Lidar, Hyperspectral (402 
bands in 400–1,000 nm), 
TIR

O O O O

ASO 2013–present 1.5 m - Lidar, Hyperspectral (72 
bands in 380–1,050 nm)

O O O

NEON AOP 2013–present 1 m - Lidar, Hyperspectral (426 
bands in 380–2,510 nm)

O O O

Note. Abbreviated missions and campaigns include MODIS (Moderate Resolution Imaging Spectroradiometer), SPOT (Satellite Pour I’Observation de la Terre), 
VIIRS (Visible Infrared Imaging Radiometer Suite), HISUI (Hyperspectral Imager Suite), PRISMA (Hyperspectral Precursor of the Application Mission), EnMAP 
(Environmental Mapping and Analysis Program), HyTI (Hyperspectral Thermal Imager), SBG (Surface Biology and Geology), FLEX (FLuorescence EXplorer), 
CHIME (Copernicus Hyperspectral Imaging Mission for the Environment), HiTeSEM (High resolution Temperature and Spectral Emissivity Mapping), ICESat (Ice, 
Cloud, and Land Elevation Satellite), GEDI (Global Ecosystem Dynamics Investigation), ECOSTRESS (Ecosystem Spaceborne Thermal Radiometer Experiment on 
Space Station), ASAR (Advanced Synthetic Aperture Radar), ALOS-PALSAR (Advanced Land Observing Satellite-Phased Array type L-band SAR), NISAR (NASA-
ISRO SAR), TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurements), GRACE (Gravity Recovery and Climate Experiment), GRACE-FO (GRACE 
Follow-on), QuikSCAT (Quick Scatterometer), SWOT (Surface Water and Ocean Topography), AMSR-E (Advanced Microwave Scanning Radiometer for Earth 
Observing System), SMAP (Soil Moisture Active Passive), MASTER (MODIS/ASTER Airborne Simulator), NAIP (National Agriculture Imagery Program), AVIRIS 
(Airborne Visible/Infrared Imaging Spectrometer), AVIRIS-NG (AVIRIS-Next Generation), NCALM (National Center for Airborne Laser Mapping), GAO (Global 
Airborne Observatory), G-LiHT (NASA Goddard's LiDAR, Hyperspectral and Thermal), ASO (Airborne Snow Observatory), and NEON AOP (National Ecological 
Observatory Network Airborne Observation Platform). Note abbreviated sensor types include VIS (visible), MIR (mid infrared), TIR (thermal infrared), NIR (near 
infrared), SWIR (shortwave infrared).

Table 2 
Continued

2.1.1. Satellite Spectral Imaging of Disturbance

Satellite-based spectral data that have either a long history of observation (e.g., Landsat; over 50 years) or a 
frequent overpass (e.g., MODIS; once a day) are widely used for continuous monitoring of the land surface and 
vegetation cover. In particular, many vegetation indices have been developed to characterize physiological activ-
ities from a local to regional scale (Cuevas-Gonzalez et al., 2009; Jin & Sader, 2005). Combinations of spectral 
bands are sensitive to specific disturbance types, such as normalized difference vegetation index (NDVI) (Gabban 
et al., 2006), normalized difference burn ratio (Miller & Thode, 2007; van Wagtendonk et al., 2004), and normal-
ized difference moisture index (Wilson & Sader, 2002), or combinations of all such indices (Kennedy et al., 2010). 
In chronic drought assessment, sensitivity of canopy water loss to precipitation and soil moisture can be indirectly 
induced from satellite-based NDVI (Gu et al., 2007, 2008; Karnieli et al., 2010; Pettorelli et al., 2005; Williams 
et al., 2013). More broadly, vegetation health and mortality can be estimated with various approaches including 
vegetation indices (Meddens et al., 2011; Spruce et al., 2019; Verbesselt et al., 2009; Walter & Platt, 2013), statis-
tical classification models (Garrity et al., 2013), empirical classification models (Fassnacht et al., 2014; Hart & 
Veblen, 2015; Meddens & Hicke, 2014), and object-based approaches (Freeman et al., 2016). These applications 
suggest the potential to provide warning signals of drought-induced mortality (Liu et al., 2019) and insect infesta-
tion stages (Meddens et al., 2011). Recently launched (e.g., Hyperspectral Precursor of the Application Mission, 
Hyperspectral Imager Suite; PRISMA, HISUI) and planned (e.g., Hyperspectral Thermal Imager, Copernicus 
Hyperspectral Imaging Mission for the Environment; HyTI, CHIME) hyperspectral missions resolve sensitive 
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spectrum ranges of species composition and physiological response to disturbance (Fassnacht et al., 2014; Lausch 
et al., 2017; Veraverbeke et al., 2018). In particular, hyperspectral vegetation indices detect detailed physiological 
response of specific species to environmental stress (Gamon et al., 2016). However, inherent constraints of the 
satellite products prohibit observation of understory attributes due to canopy obstruction and coarser resolution.

2.1.2. Satellite Lidar and Photogrammetry of Disturbance

Satellite-based laser scanning and photon counting has a relatively short record of use in geoscience research 
(Frolking et al., 2009) but demonstrates the ability to assess post-disturbance forest regrowth (Dolan et al., 2009; 
Goetz et  al.,  2010). Recently launched active remote sensing missions such as the Advanced Topographic 
Laser Altimeter System (ATLAS) onboard ICESat-2 and NASA's Global Ecosystem Dynamics Investigation 
(GEDI) are expected to improve our ability to quantify post-disturbance vegetation regrowth and carbon trans-
port at sub-meter to a few meter resolution (Boucher et al., 2020; Francini et al., 2022). In particular, the GEDI 
data has showed potential in disturbance assessment with biomass (Dorado-Roda et al., 2021; Qi et al., 2019), 
canopy  structure (Marselis et al., 2022), and canopy height (Dorado-Roda et al., 2021) estimations over vari-
ous biomes. Challenges of this platform-sensor combination include uncertainty in determining land surface 
elevation over sloping areas because of difficulties in separating mixed signals from the ground and understory 
vegetation (Rosette et al., 2008).

2.1.3. Satellite Thermal Sensing of Disturbance

Thermal infrared sensors can effectively indicate drought conditions using vegetation water stress and retrieval 
of biophysical parameters (Otkin et al., 2013; Seyednasrollah et al., 2019), often combined with either spectral 
vegetation indices (Karnieli et al., 2010) or soil moisture data from microwave sensors (Hao & Singh, 2015; Jiao 
et al., 2019). Widely used water stress indices include the crop water stress index (CWSI), which is based on a 
linear relationship between temperature difference from the leaf to the atmosphere, and VPD (Idso et al., 1981). 
However, this approach has limited application to forests because variables that are needed to translate ther-
mal measurements into water stress indices (e.g., aerodynamic resistance, stomatal conductance, soil moisture) 
are difficult to estimate over heterogeneous landscape (Liu et al., 2020). Besides, the coarse-resolution thermal 
information of vegetation canopy is often interfered with background soil emissivity for low canopy density 
(Neinavaz et al., 2021). The recently launched Ecosystem Spaceborne Thermal Radiometer Experiment on Space 
Station (ECOSTRESS) mission provides daily estimation of water use and demand (i.e., evapotranspiration 
and evaporative stress index) based on the frequent image acquisition (i.e., multiple times of day with a return 
frequency of 1–5 days) (Fisher et al., 2020). Despite a short term-deployment on the space station, ECOSTRESS 
can help us understand pre- and post-disturbance diurnal ecosystem processes related to vegetation water stress 
(Pascolini-Campbell et al., 2022) and productivity (Poulos et al., 2021).

2.1.4. Satellite Radar Remote Sensing of Disturbance

Backscattered radiation from the radar system is closely related with scattering surface properties to render a 
3D structure of the land surface and tree canopy (Treuhaft et al., 2004) and estimate vegetation attributes using 
allometric or empirical relationships (Saatchi et al., 2007). Satellite radar data from past (e.g., Advanced Land 
Observing Satellite-Phased Array type L-band Synthetic Aperture Radar, Envisat-Advanced Synthetic Aperture 
Radar, Advanced Microwave Scanning Radiometer for Earth Observing System, Quick Scatterometer SeaWinds; 
ALOS-PALSAR, Envisat-ASAR, AMSR-E, QuikSCAT SeaWinds), current (e.g., Sentinel-1, AMSR-2), and 
planned (e.g., BIOMASS, NASA-ISRO SAR, Surface Water and Ocean Topography; NISAR, SWOT) missions 
can be used to quantify disturbance-induced change in forest structure (Musthafa et al., 2020; Tanase et al., 2018), 
foliage volume (Bae et al., 2022; Tanase et al., 2019), vegetation water content (Anderegg et al., 2018; Konings 
et al., 2019), biomass (Jones et al., 2013; Konings et al., 2021; Lucas et al., 2010; Momen et al., 2017), leaf 
water stress (Frolking et al., 2011; Saatchi et al., 2013), fire extent (Tanase et al., 2011), burn severity (Tanase 
et al., 2010), and tree mortality (Rao et al., 2019). This approach is especially useful in detecting substantial 
change in forest structure (e.g., deforestation, high severity fire) with stronger electromagnetic returns, that is, 
less scattering from the canopy layer (Almeida et  al.,  2007). However, challenges including high spatial and 
temporal variability in backscatter signals (Ruetschi et al., 2019) and weak penetration of the radar pulses for 
assessing understory changes (Bouvet et al., 2018; Lohberger et al., 2018) exist for the satellite data. In addition, 
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predictability declines for high biomass forests and increasing soil moisture (Lucas et al., 2010) due to signal 
saturation, that is, decreased sensitivity of electromagnetic return to aboveground biomass (Joshi et al., 2017).

2.2. Airborne- (Fixed Wing/Helicopter) Based Sensors

Starting with aerial photogrammetry, airborne remote sensing has a long history of observing the Earth's surface 
in many parts of the globe. Having relatively fewer technological and operational challenges than satellites, 
this platform is specialized in high spatial resolution sensing (submeter to a few meters) of the land surface at 
a landscape scale. In particular, intensive airborne campaigns such as MODIS/Advanced Spaceborne Thermal 
Emission and Reflection (ASTER) Airborne Simulator (MASTER) possess unique value as a precursor to satel-
lite missions with (a) calibration of satellite sensors, (b) validation of the geophysical retrieval algorithms for 
target platform/sensor combinations, and (c) collection of higher spatial, temporal, or spectral resolution data to 
bridge the coarser satellite data to ground-based observations (Harris et al., 2011; Hook et al., 2001; Veraverbeke 
et al., 2011) (Table 2, Figures 1 and 2).

2.2.1. Airborne Spectral Imaging of Disturbance

Airborne imaging spectroscopy is widely known as an effective tool to map the spatial distribution of phys-
iological and biophysical status of vegetation species (Asner et  al.,  2014,  2015). The fine spatial resolution 
products facilitate tree-level assessment of multi-scale disturbances (Arnett et al., 2014; Lewis et al., 2012) and 
disaggregate satellite images (Gartner et al., 2016; Latifi et al., 2018). In particular, recently available hyperspec-
tral imagery provides new opportunities in finding sensitive spectral ranges for forest health analysis (Huesca 
et al., 2021; Veraverbeke et al., 2018). A combined use of the imaging spectroscopy and lidar links forest structure 
to drought susceptibility with examples of strong relationships between tree mortality and tree height (Baguskas 
et al., 2014; Stovall, Shugart, & Yang, 2019), elevation (Baguskas et al., 2014), and canopy water content (Brodrick 
& Asner, 2017; Martin et al., 2018; Paz-Kagan et al., 2018). Post-disturbance studies of fire severity (Kokaly 
et al., 2007; Robichaud et al., 2007; Veraverbeke et al., 2014) and tree mortality (Fassnacht et al., 2014; Tane 
et al., 2018) show the value of hyperspectral imagery from pre- and post-disturbance (Veraverbeke et al., 2018). 
Contrary to satellite platforms, however, tracking a pathway of physiological and biophysical responses with high 
temporal resolution (e.g., less than a few days) is generally not feasible with airborne sensing due to constraints 
in costs and labor.

2.2.2. Airborne Lidar and Photogrammetry of Disturbance

Airborne laser scanning has the great potential in monitoring spatial dynamics of forest structure at local to 
regional scales with respect to disturbance (Newton et al., 2009). The structural properties of segmented trees 
(e.g., tree height, wood volume, biomass, species type, canopy size, canopy density, basal area, and diameter 
at breast height) enhance the conventional method that empirically estimates biomass (Chen et al., 2007; Yu 
et al., 2011; Zolkos et al., 2013). The airborne active sensing substantially increases the accuracy of understory 
vegetation cover measurements (Hamraz et  al.,  2017; Wing et  al.,  2012) that is important for understanding 
post-disturbance vegetation reestablishment and succession stages (Chen et  al.,  2008; Falkowski et  al., 2009; 
Kane et  al.,  2010,  2011; van Ewijk et  al.,  2011). However, differentiation of understory vegetation depends 
on canopy obstruction (e.g., dense/sparse, short/tall canopy) with respect to the orientation of the lidar sensor 
(Campbell et al., 2018). In this case, allometric modeling could alternatively estimate understory tree size distri-
bution using lidar-based overstory inventories (Swetnam et al., 2014).

2.2.3. Airborne Thermal Sensing of Disturbance

Airborne thermal sensing provides direct information of how disturbance and plant response progress to refine 
satellite analysis with disaggregated observation (Allison et al., 2016; Hook et al., 2001). This zoom-in product 
is essential in calibration and correction of satellite products for atmospheric attenuation, cloud contamination, 
and background emissivity (Ackerman et al., 1998). Airborne thermal information indicates physiological state 
of trees with less atmospheric interference (Virlet et al., 2014) so that water stress (Gerhards et al., 2018) and 
drought impacts (Coates et al., 2015) are assessed at a canopy level. The tree-scale analyses have revealed that 
different tree sizes (Junttila et al., 2017) and species (Scherrer et al., 2011) have different drought susceptibility 
and adaptation strategies to drought conditions. These findings highlight a need for high resolution data on the 
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hillslope terrain where plant water availability is heterogeneous. Extra care should be taken for a shade impact on 
the thermal image especially when the flights are at different times of the day.

2.2.4. Airborne Radar Remote Sensing of Disturbance

Dense observation of the forest structure from the airborne radar links the catchment- (i.e., satellite) to tree-scale 
(i.e., ground) measurement (Lucas, Lee, & Williams, 2006) (Figure 1). Some intensive regional radar campaigns 
(e.g., AirSWOT) are dedicated to refining existing and upcoming satellite altimetry missions (e.g., SWOT) as 
precursors (Altenau et al., 2017; Pitcher et al., 2019; Wang et al., 2022). These airborne data can potentially 
assist the utility of satellite missions in disturbance assessment with regard to tracking long-term changes over 
decades. Detailed observation of structural attributes contributes to evaluation of aboveground biomass change 
due to thinning and typhoons (Takahashi et al., 2011), forest cover change (Ningthoujam et al., 2016), and forest 
regrowth (Lucas, Cronin, et al., 2006; Lucas, Lee, & Williams, 2006). Nevertheless, more studies on identifica-
tion of backscatter sensitivity over forest types, species compositions, and climate settings are needed for reliable 
forest change assessment.

2.3. UAV

UAV-based environmental remote sensing has developed a substantial number of applications in the last decade 
related to CZ disturbance (Vivoni et al., 2014). The advent of UAVs led to land surface observation with oper-
ational benefits such as repeat imagery at very high spatial resolution (<1 m), flexibility in flight scheduling, 
affordable on-demand surveys, and reduced technical and operational barriers for individual investigators. The 
flights can be operated from the ground with user-defined spatial resolution and scale. A wide range of existing 
sensors onboard airborne and satellite platforms, including digital photogrammetry, spectroscopy, and laser scan-
ning, can be readily transferred to UAVs. UAVs are especially useful to link satellite to field data by (a) comple-
menting the field data in space and time, and (b) calibration and validation of satellite products (McCabe, Rodell, 
et al., 2017). However, the diverse use of these arrays may need standardization in observation and application, 
especially for multidisciplinary collaborations (Tang & Shao, 2015). In disturbance assessment, real-time moni-
toring of ongoing disturbance (e.g., insect outbreaks and wildfire) with UAVs can increase availability, afforda-
bility, and efficiency of data acquisition compared with other platforms (Arroyo et al., 2008; Wulder et al., 2006). 
The research-grade capabilities of autonomous UAVs have been increasingly demonstrated from environmental 
studies with spectral imaging (Section 2.3.1), lidar and photogrammetry (Section 2.3.2), and thermal sensing 
(Section 2.3.3) to link satellite and airborne observations to ground data. Multiple-band radar sensors on UAVs 
have been applied for forest mapping in the last decade (Y. W. Chen et al., 2017) but forest change was hardly 
assessed due to a relatively short record of use.

2.3.1. UAV Spectral Imaging of Disturbance

In disturbance characterization, spectral characteristics are leveraged to identify tree health and physiological 
response (Abdollahnejad & Panagiotidis, 2020; Dash et al., 2017; Lehmann et al., 2015). The spectral traits from 
UAV images are useful to distinguish infested and dead trees from healthy trees (Kloucek et al., 2019). In particu-
lar, UAV-based hyperspectral data may be the best way to classify infestation stages of individual trees rather than 
the conventional pixel-based approach from coarser-resolution satellite images. Hyperspectral information from 
UAVs is especially useful in mapping forest health stages (e.g., healthy, infested, dead) (Nasi et al., 2015, 2018) 
and physiological stress (e.g., vegetation indices) (Dash et al., 2017) of individual trees with a few pioneer stud-
ies. Compared with airborne images, UAV hyperspectral images better predicted individual spruce health associ-
ated with bark beetle infestation (Nasi et al., 2018). The tree-scale analysis demonstrated that the optimal spatial 
resolution of imagery would be acquired at scales as fine as 1 m (Dash et al., 2017).

2.3.2. UAV Lidar and Photogrammetry of Disturbance

Although not widely employed in disturbance studies, UAV remote sensing has large existing value and poten-
tial. The digital photography-based canopy height, biomass, and canopy cover are highly correlated with field 
measurements during forest recovery (Zahawi et  al.,  2015). UAV-based photogrammetry has been increas-
ingly useful for disturbance assessment with a wide range of choices in digital cameras and development of 
image processing algorithms. The visible images acquired from UAVs can provide sub-meter measurements 
of forest properties, including forest composition (Alonzo et al., 2018; Bourgoin et al., 2020), tree crown area  
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(Chadwick et al., 2020; Panagiotidis et al., 2017), canopy height (S. J. Chen et al., 2017; Krause et al., 2019; 
Larrinaga & Brotons, 2019; Mohan et al., 2017; Panagiotidis et al., 2017), and forest cover (Rossi et al., 2018). The 
photography-based 3D point cloud, often generated by structure from motion (SfM), is especially useful in mode-
ling understory structures. SfM-based point clouds in disturbed forests identified lower height with homogeneous 
textures of the logged forest canopy (Bourgoin et al., 2020). Another study showed that the canopy height model 
and vegetation indices could be regressed to characterize post-fire pine regrowth (Larrinaga & Brotons, 2019). 
Saarinen et al. (2018) suggested that integrated use of the structural and spectral datasets could reliably estimate 
understory biodiversity. These high-resolution forest structures demonstrate reliable estimations compared with 
ground-based data (Rossi et al., 2018; Tomastik et al., 2017) and lidar-based point clouds (McNicol et al., 2021; 
Wallace et al., 2016). Processing resolution may limit accuracy of UAV-based canopy structure models.

2.3.3. UAV Thermal Sensing of Disturbance

UAV-based thermal data can be used to estimate vegetation water stress that shows strong correlations with 
ground-based measurements (Baluja et al., 2012; Bellvert et al., 2015; Bian et al., 2019; Javadian et al., 2022; 
Santesteban et al., 2017). Stomatal conductance derived from leaf surface temperature can inform how different 
species respond to water stress conditions at a leaf level, potentially useful for understanding how stomatal activi-
ties respond to varying drought intensity (Ludovisi et al., 2017; Smigaj et al., 2017). Similarly, significantly lower 
increases in canopy temperature and water stress in a thinned ponderosa pine forest support greater resiliency to 
drought than an untreated forest (Sankey & Tatum, 2022). Determination of wet- and dry-end temperature and 
mean temperature of the canopy surface is also crucial for estimating physiological status. Relationships between 
forest structure and canopy surface temperature were also used to evaluate diurnal surface temperature and water 
stress from satellite thermal products (Javadian et al., 2022).

2.4. Ground

Ground-based remote sensing has been increasingly available with smaller, lighter, and cheaper sensor systems. 
Recent advances in sensor technology have allowed ecosystem monitoring with opportunities including very high 
(millimeters to centimeters) and adjustable spatial and temporal resolution, ready availability, and very low cost. 
High maneuverability and versatility of sensor systems enhance the usability in field observations with various 
purposes and customizations. Because the sensing distance to the object is fairly close, product calibration and 
validation is more readily available with in-situ observations, but spatial coverage is limited by accessibility and 
time available to manually operate the equipment. Particularly with different viewing angles and geometry due 
to relatively low observation height, ground-based remote sensing is valuable for observing understory attributes 
especially in dense canopy that the other platforms cannot readily observe. With sensor size reduction for general 
use, sensors embedded in portable devices (i.e., smartphones and tablets) make field observation even more read-
ily available (Luetzenburg et al., 2021; Tavani et al., 2022).

2.4.1. Ground Spectral Imaging of Disturbance

Ground spectral imaging is a relatively underexplored realm in forest research because observation of the top of 
the canopy surface is not readily available in many cases. With technological advances in hyperspectral imag-
ing, however, physiological traits of the canopy can be detected with hundreds of spectral bands. This benefit 
can leverage the PhenoCam Network, the nationwide field photograph network covering multiple ecotones and 
species composition (Richardson, 2019; Richardson et al., 2018), by providing regular data acquisition of the 
forest canopy with more specific spectral information. A portable spectroradiometer can detect early stage insect 
infestation because of the difficulties in discrimination otherwise.

2.4.2. Ground Lidar and Photogrammetry of Disturbance

Examples of a standalone ground-based remote sensing survey include utilization of terrestrial laser scanning 
(TLS) to generate microtopography (Harman et al., 2014; Nouwakpo et al., 2016; Stovall, Diamond, et al., 2019), 
vegetation structure (Ashcroft et al., 2014; Grau et al., 2017; Kong et al., 2016; Richardson et al., 2014), and soil 
erosion and transport (Ballesteros-Canovas et al., 2015; Eitel et al., 2011; Longoni et al., 2016) models at very 
high resolution (i.e., millimeters to centimeters). Due to deployment height and viewing angle, TLS is particu-
larly specialized in monitoring understory vegetation structure, including tree stems (Heinzel & Huber, 2017) 
and biomass (Li et  al.,  2021), evaluating post-disturbance understory changes (Li et  al.,  2021), and refining 
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other laser scanning platforms (Crespo-Peremarch et al., 2018, 2020; Luscombe et al., 2015). TLS enhances the 
conventional method that empirically estimates biomass from structural properties of vegetation (e.g., canopy 
size, density, species composition). Plant structure derived from laser scanning products (i.e., canopy height, 
understory cover, and foliage diversity) correlates strongly with biomass measurements, and thus suggests great 
potential in biomass change mapping (Hall et  al., 2011) and carbon budget estimation (Harman et  al., 2014; 
Singhal et al., 2021; Stovall et al., 2018). Very specific vertical profiling from TLS can predict species richness 
and ultimately inform change in biodiversity (Anderson et al., 2021). Nevertheless, the operational barriers (e.g., 
labor intensiveness, limited observation height above the land surface, obstruction of the object during the hori-
zontal sensing) constrain regular data acquisition especially over a large area.

2.4.3. Ground Thermal Sensing of Disturbance

Despite limited capability in observing tall forest canopy, ground-based thermal sensing has been increasingly 
used in forest monitoring with benefits including constant viewing geometry and no need for atmospheric correc-
tion on attenuation and cloud contamination (Hwang et al., 2023). Liu et al.  (2020) used canopy leaf surface 
temperature from multiple thermal sensors to estimate CWSI in Mediterranean forests. Estimated CWSI has an 
exponential relationship with soil moisture and a linear relationship with soil water potential. This relationship 
between CWSI and soil moisture was used in a wheat field to inversely estimate root zone soil moisture, which 
has high spatio-temporal variability and is difficult to measure with contemporary remote sensing capabilities 
(Akuraju et al., 2021).

2.4.4. Ground Radar Remote Sensing of Disturbance

Ground radar remote sensing, including ground penetrating radar (GPR), has received relatively little attention 
in forest disturbance monitoring. However, it may provide useful information in post-disturbance forest regrowth 
because underground attributes such as the regulation of root water uptake and distribution of root systems influ-
ence physiological responses (Manoli et al., 2017). GPR is capable of mapping underground attributes, including 
soil profiles (Huisman et al., 2003; Lambot et al., 2002), tree root systems (Alani & Lantini, 2020), and root 
biomass (Guo et al., 2013). Coherence between remotely sensed canopy and root structure at a 3–4 m scale (and 
larger for old stands) may better capture pre- and post-disturbance belowground forest structures for comparison 
(Hardiman et al., 2017).

3. Examples of Observing CZ Response to Disturbance
The accelerating pace of natural and human-caused disturbances in the western US, including flooding (Brunner 
et al., 2020), wildfire (Dennison et al., 2014), and drought (Anderegg et al., 2015), has given opportunities to 
observe CZ response and vegetation recovery. Less than 15 years old, the National Science Foundation (NSF) 
funded Critical Zone Observatories (CZOs) and the Critical Zone Collaborative Network (CZCN) have expe-
rienced substantial disturbances over their short lifetimes. Here, we discuss examples of large flooding events, 
intense fires, lower severity lightning-caused fires, forest restoration, and drought effects. These examples 
combine different sensors and platforms across multiple disturbance types, which illustrate the potential applica-
tion of certain technologies for some types of disturbances but not others. Overall, these case studies demonstrate 
the uniqueness of different types of disturbances, local site issues that impact vegetation recovery and remote 
sensing platforms, and illustrate opportunities for better observations across scales using new remote sensing 
capabilities.

3.1. Biogeomorphic Responses to Flooding and Fire

Flooding can cause significant geomorphic changes on hillslopes and within river corridors (channels and 
floodplains) (Coe et  al.,  2014; Magilligan et  al.,  2015), and fire can result in increased sediment and water 
yields, enhanced deposition in river corridors, and more frequent debris flows (McGuire et al., 2021; Rathburn 
et al., 2018; Smith et al., 2011; Warrick et al., 2012). Geomorphic changes alter the physical template on which 
ecosystems respond to disturbance; for example, disturbance frequency and type controls the spatial organization 
of riparian plant assemblages in river corridors (Gurnell et  al., 2016). In addition, disturbances such as fires 
and floods influence the partitioning of organic carbon (OC) stored in sediment, vegetation, and downed large 
wood (>1 m in length and >0.1 m in diameter) within watersheds (Lininger et al., 2021; Rathburn et al., 2017). 
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Quantification of these changes needs disaggregated observation to address ecogeomorphic responses as follows: 
(a) how flood events erode hillslopes and redeposit sediment, (b) how vegetation controls patterns of erosion and 
deposition, and (c) vegetation reestablishment patterns in erosion or deposition zones.

An extreme precipitation event that occurred over multiple days on the Colorado Front Range in September 2013 
caused substantial geomorphic changes on hillslopes and in river corridors. Over the course of the event, rainfall 
totals exceeded 450 mm in some areas (Gochis et al., 2015), causing over 1100 landslides and debris flows iden-
tified through examination of high-resolution (0.5 m) spectral satellite imagery (Coe et al., 2014). Many studies 
used repeat high resolution lidar datasets taken pre- and post-flood to assess topographic changes using digital 
elevation models of difference (DoDs). For example, debris flows that occurred during the precipitation event 
resulted in an average of ∼10 mm of basin-wide lowering over an area of 102 km 2 (Anderson et al., 2015). In 
addition to hillslope failures, DoDs allowed for quantification of deposition and erosion in river corridors along 
the Front Range (Sholtes et al., 2018).

That same 2013 flood also influenced the partitioning and storage of OC in sediment and large wood. In the 
North St. Vrain watershed, pre- and post-flood lidar dataset. along with field data demonstrated that the flood 
mobilized significant amounts of sediment and associated OC from hillslopes and the river corridor, resulting in 
increasing deposition in downstream reservoirs (Rathburn et al., 2017). In addition to deposition in reservoirs, the 
flood eroded standing trees on hillslopes and in the valley bottom, depositing large wood into accumulations on 
floodplains in multiple drainages (Guiney & Lininger, 2022; Lininger et al., 2021). In a watershed impacted by 
both the 2013 flood and a recent upstream fire, the amount of large wood deposited on the floodplain was signif-
icantly greater when compared with a watershed that experienced the 2013 flood without a recent fire (Guiney 
& Lininger, 2022).

Remote sensing data have proven to be effective in determining the impact of human activities, such as beaver 
removal, beaver reintroduction, and anthropogenic structures (e.g., beaver dam analogs), on river corridor response 
to wildfire and flooding. Beavers influence biogeomorphic interactions including riparian water table,  regulate 
water storage and flow, modify vegetation composition and abundance, and promote sediment deposition and 
associated carbon (Larsen et al., 2021; Norman et al., 2022). The presence of beavers and their associated struc-
tures, such as abandoned beaver dams and channel-spanning log jams (accumulations), can attenuate sediment 
fluxes following wildfires in unconfined, physically complex river corridors within mountain stream networks 
(Wohl et  al.,  2022). In the western US, river corridors with beaver activity maintained higher NDVI during 
large wildfires compared to those without beaver activity, indicating how beavers create refugia during wildfire 
(Fairfax & Whittle,  2020). Lidar datasets, multispectral data, and a combination of both can help assess the 
ecogeomorphic impact of disturbance, including the role of beavers in mediating disturbances, sediment and OC 
fluxes during flooding, and the influence of erosion and deposition on riparian and hillslope forest structure.

3.2. High Severity Fire

High severity fire in the western US often accompanies drought and different pathways of vegetation regrowth 
that adapt to local hydrometeorological conditions (Savage et al., 2013). Here, we define burn severity as the 
degree of fire-induced change to vegetation and soil conditions (Ebel et al., 2018; Parks et al., 2018; Robichaud 
et al., 2007). Along with forest type, severity of fire affects forest recovery and carbon flux trajectories (Ghimire 
et al., 2012). However, understanding of these post-disturbance recovery processes is lacking despite decades of 
remote sensing-based diagnoses. Detailed monitoring of changes in forest structure helps better understand both 
immediate forest cover loss as well as the multi-year to multi-decadal response of the forest to high severity fires. 
Research questions include: (a) How does vegetation regrowth vary across high severity fire areas? (b) How do 
standing dead trees interfere with regrowth detection? (c) How does high severity fire change snow accumulation 
and ablation?

Different sensor types and platforms depict different degrees of post-fire vegetation regrowth with two high 
severity fire cases. Two stand-replacing wildfires, the Las Conchas Fire (2011) and Thompson Ridge Fire in 
(2013), impacted the aspen- and mixed conifer-dominated Rabbit and Redondo Mountain sites in the Jemez 
CZO in New Mexico, respectively (Figure 3). Both the multispectral and lidar metrics visually show vegetation 
loss and regrowth associated with the high severity fire (Figures 4 and 5). The fine-resolution airborne metrics 
visually demonstrate spatially variable degrees of forest regrowth after high severity fire. Various platforms 
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Figure 3. Redondo Mountain (top) and Rabbit Mountain (bottom) in Jemez CZO were affected by Thompson Ridge Fire in 
2013 and Las Conchas Fire in 2011, respectively. Gray stripes of the Landsat burn severity map from the Monitoring Trends 
in Burn Severity (MTBS) program (Eidenshink et al., 2007) indicate non-processing area due to the Scan Line Corrector 
failure on the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) sensor. NAIP aerial images illustrate the areas before the 
Thompson Ridge Fire and Las Conchas Fire in (2011), 1/3 years after the fires (2014), and 7/9 years after the fires (2020). 
Site photographs illustrate the subalpine conifer area in Redondo Mountain (a) before the fire, post-fire understory regrowth 
(b) a year after the fire with standing dead trees and emergent ground cover, and (c) 3 years after the fire with only tree boles 
remaining and heterogeneous seedling reestablishment.
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show different observation capabilities with respect to the observation height and angle. In particular, National 
Agriculture Imagery Program (NAIP) NDVI maps detect areas of fire loss and post-fire vegetation regrowth 
in some areas that coarser-resolution Landsat NDVI maps do not. The lidar-based canopy height model may 
depict misleading information on burn severity and post-fire regrowth, suggesting the importance of comparing 
multiple vegetation metrics to understand the full story of post-disturbance recovery. Both airborne and ground 
observations show post-fire regrowth of understory vegetation. However, substantial loss in canopy height does 
not directly correlate biomass loss and decrease in NDVI at the same period, especially with respect to wildfire.

Vegetation structure metrics derived from the lidar data are useful in evaluating vegetation change and modeling 
post-fire understory vegetation succession. Changes in canopy height and density present physical change in 
forest structure and spatially agree with aerial photographs. In particular, canopy density change depicts large 
areas of regrowth compared with post-fire changes, whereas canopy height decreases in most areas both due to 
fire and during the regrowth period (Figures 4 and 5). Canopy density change maps present contrasting patterns 
in response to fire and subsequent regrowth. Canopy height difference maps illustrate the fire-induced canopy 

Figure 4. Spatial distribution of vegetation metrics in Rabbit Mountain indicating postfire vegetation loss (left panel of the 
maps) and regrowth (right panel) from the Las Conchas fire in 2011. Gray stripes of the MTBS burn severity map indicate 
non-processing area due to the Scan Line Corrector failure on the Landsat 7 ETM+ sensor. The Landsat 7 NDVI range in July 
indicates a stark decrease by fire and gradual post-fire recovery. The lidar canopy density map during the regrowth period 
represents the understory vegetation density (<2 m above the land surface).
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loss. However, post-fire vegetation regrowth was captured to a limited extent in the given area due to falling of 
large fire-damaged trees that potentially created a spatially heterogeneous regrowth pattern. The ground-based 
TLS data provided a more detailed structure of understory vegetation with operational flexibility, which would 
be ideal for monitoring post-disturbance vegetation regrowth. The fine-resolution remote sensing could reduce 
uncertainties in physiology and biomass changes, which can supplement larger-scale products.

The NAIP NDVI difference maps visually demonstrate burned and regrowing areas, suggesting their ability in 
disaggregating coarser-resolution Landsat NDVI. Especially near the fire perimeter, NAIP provided spatially 
detailed information on change in canopy greenness. Compared with the lidar maps, the NAIP NDVI maps may 
be less sensitive to vegetation growth because once established, canopy cover masks understory growth. The 
maximum NAIP NDVI values in the scene recovered to 0.50 in 2014 due to understory vegetation reestablish-
ment and then gradually increased to 0.65 in 2020. Landsat time series data show the burn damage and vegetation 

Figure 5. Spatial distribution of vegetation metrics in Redondo Mountain indicating vegetation loss (left panel of the maps) 
and regrowth (right panel) from the Thompson Ridge fire in 2013. July GPP and net ecosystem exchange (NEE) observations 
from the eddy covariance tower indicate a stark decrease by fire and gradual post-fire recovery. The lidar canopy density map 
during the regrowth period represents the understory vegetation density (<2 m above the land surface).
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regrowth at annual timesteps (Figure 4). A Landsat NDVI range in July at the Rabbit Mountain site plummeted 
from 0.22 to 0.61 in 2010 to 0.03–0.07 in 2011, before gradually increasing to 0.31–0.40 from regrowth in 2020. 
July peak values decreased from 0.63 (2001) to 0.43 (2016). The NAIP NDVI difference maps in the Redondo 
Mountain site provide detailed information of vegetation loss and regrowth due to the Thompson Ridge Fire in 
2013 (Figure 5). Continuous ground-based observation indicates a large reduction in carbon sequestration and 
ecosystem productivity in the years following the fire. Carbon sink strength in the 6 years following the fire was 
approximately 1/8 of the total carbon sequestration in the 6 years prior to the burn (Figure 5). Recovery of vege-
tation following the fire was hindered by drier than average years in 2016, 2017, and 2018 prior to the monsoon. 
Without canopy obstructions from large trees due to the fire loss, this high-resolution product visually detects 
understory vegetation regeneration that the coarser-resolution Landsat NDVI failed to differentiate.

3.3. Restored Low-Severity Fire Regime

Many forested areas in the Sierra Nevada of California were historically adapted to frequent, mixed-severity 
wildfires started by lightning or Native American ignitions (Van Wagtendonk, 2007). Widespread fire suppres-
sion over the last century has altered forest characteristics that affect fuel loads, fire behavior, and ecohydro-
logical processes. Data and modeling efforts based in the Illilouette Creek Basin (ICB) in Yosemite National 
Park, where fire use policies have been implemented to restore a natural wildfire regime since 1972, suggest 
that these policies reduced fire hazards and increased annual streamflow production through large changes in 
landscape-scale forest cover and structure (Stephens et al., 2021). Despite 80–100 years of fire exclusion policies 
from ∼1880 to 1972, the frequency of contemporary fire activity in ICB is similar to the pre-fire exclusion period 
(∼1700–1880 C.E.) using dated fire scars (Collins & Stephens, 2007). Since 1974, only 14% of the total burned 
area in the basin has been classified as high severity, despite more than fifteen fires covering approximately 80 
km 2 (over half of the basin area and 75% of the vegetated area) (Boisrame et al., 2019). The return of natural fire 
to the ICB has allowed investigation into the processes driving natural fire-vegetation dynamics. Assessments of 
landscape-scale vegetation change using aerial photography during the managed fire period revealed that in the 
ICB, the proportion of the basin comprised of conifer forest decreased from 82% to 62%, and was replaced by 
shrublands and meadows (Boisrame, Thompson, Kelly, et al., 2017). The change in forest composition resulted 
in markedly lower surface fuel loads (Collins et al., 2016) and increasing wetness and runoff-precipitation ratio 
(Boisrame, Thompson, Collins, & Stephens, 2017). Both short-term (year to few years after fire) and long-term 
(decades after fire) vegetation change due to mixed-severity fire needs comprehensive assessment to specifically 
address (a) how vegetation regrowth responds to fire in different landscape positions, (b) the net effects of low 
severity fire on water and energy budgets over different time scales, and (c) how resilient remaining forests are 
to high severity fire.

Wildfire manipulates forest biomass and carbon dynamics over decades (Sato et al., 2016). The northwestern 
part of the watershed has been exposed to two major mixed-severity fires since 2000: the Meadow Fire in 2004 
and Empire Fire in 2017 (Figure 6). Vegetation cover maps using National Aerial Photography Program (NAPP) 
and NAIP images display substantial changes in vegetation type patches from before the Meadow Fire through 
2020. The moderate-high severity burned areas were dominated by sparse vegetation for a few years after the 
fire and then by the shrub expansion (Figure 6). Shrub-dominated areas then largely reburned at high sever-
ity, likely due to the spatially continuous fuel load these shrubs provided. The Landsat data demonstrate their 
value in temporally consistent data acquisition for long-term monitoring of vegetation disturbance and regrowth 
(Figure 6). NDVI throughout several decades presents fire-induced vegetation loss and regeneration with the 
relative chlorophyll content and associated physiological attributes. Nevertheless, the spectral vegetation index 
did not explain the change in species composition. This change in composition is important because a complete 
loss of tree cover (as occurred in the 2004 high severity areas) and a complete loss of shrub cover (as occurred in 
2017 high severity areas) have different implications in terms of carbon loss (Gonzalez et al., 2015) and changes 
to the local water budget (Bart et al., 2016; Boisrame et al., 2018, 2019). However, these differing vegetation 
changes are both interpreted as high severity from Landsat (severity maps in Figure 6). A combination of satellite 
products and finer-scale aerial imagery provide a much more nuanced understanding of wildfire's impacts in this 
basin than using only a single data product.

Short-term changes in vegetation loss and reestablishment due to fire highlight a need for detailed observa-
tions in temporal, spatial and spectral resolutions. The focal area in ICB displays vegetation loss and regrowth 

 23284277, 2023, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022E

F003314, W
iley O

nline L
ibrary on [12/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Earth’s Future

HWANG ET AL.

10.1029/2022EF003314

18 of 37

from the 2017 Empire Fire (Figures  7i–7k). Post-fire vegetation change of two higher-resolution vegetation 
indices spatially agrees with the Landsat burn severity map (Figure 7). In particular, the chlorophyll carotenoid 
index (CCI), acquired from airborne hyperspectral band images, may be useful in capturing changes in biomass 
and species (Figures  7a and  7b). Compared with NDVI (which indicates the chlorophyll content), CCI is a 
carotenoid-sensitive vegetation index that measures carotenoid pigments and thus provides improved monitoring 
of gross primary productivity (GPP) phenology of conifer trees (Gamon et al., 2016). While Airborne Visible/
Infrared Imaging Spectroradiometer (AVIRIS) CCI and NDVI show similar spatial patterns in terms of their 
disturbance (Figures 7a and 7c), they capture very different recovery patterns (Figures 7b and 7d), ostensibly 
capturing different components of the vegetation recovery. Comparing NDVI from AVIRIS (Figures 7c and 7d) 
and Landsat (Figures 7e and 7f) illustrates the ability of the higher resolution AVIRIS to capture more detailed 
patterns of disturbance, recovery, and post-fire mortality or stress. These small-scale effects of fire on vegetation 
cover are important to capture as they can have important impacts on biodiversity (Turner, 1989), as well as 
hydrologic processes such as snow water storage (Lundquist et al., 2013).

3.4. Forest Thinning

Forest thinning may result in increases in short-term water yields, although increases in evaporation and water use 
by remaining trees typically mean that these gains are often negligible (Tague et al., 2019). How forest thinning 
translates into these proposed benefits at specific locations and given a wide range of fuel treatment character-
istics remains highly uncertain—and likely varies not only across broad regional bioclimatic gradients but also 
within local management units (e.g., within a first order watershed) with slope, aspect, prior vegetation, and 
subsurface characteristics (Burke et al., 2021; Hanan et al., 2021; Hunter & Robles, 2020). Substantial research is 

Figure 6. Long-term trends of aerial photograph (first row—photos prior to 2005 are color infrared NAPP images from USGS, others are true color NAIP imagery 
from USDA), Landsat NDVI (second row) and aerial photography-based vegetation cover (third row; Boisrame, Thompson, Collins, & Stephens, 2017; Boisrame, 
Thompson, Kelly, et al., 2017) in the Illilouette Creek Basin (ICB). From 1980 to 2018, the inset region experienced multiple mixed-severity fires including the 2004 
Meadow Fire and 2017 Empire Fire.
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Figure 7. Spatial distribution of (a, b) AVIRIS CCI difference, (c, d) AVIRIS NDVI difference, (e, f) Landsat NDVI 
difference, and (g, h) burn severity in Illilouette Creek Basin indicating vegetation loss (the left column) and regrowth (the 
middle column) from the 2017 Empire Fire. The MTBS burn severity maps indicate a variety of vegetation loss within the 
scene. Site photos show a shrub field (i) before the fire (2016), (j) immediately after the fire (November 2017), (k) 1 year 
after the fire (2018), and (l) 2 years after the fire (2019).
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still needed to (a) better characterize fuel treatments themselves, including their intensity, spatial extent and how 
they change the canopy structure, (b) monitor how vegetation recovers following fuel treatments and similarly 
following fire and other disturbances, and (c) link these changes in canopy structure with response variables of 
interest including the productivity and growth of remaining trees but also hydrologic variables including snow 
accumulation, snowmelt, and streamflow. Remote sensing can facilitate improved characterization of how fuel 
treatments actually alter forest structure, how forest structure then evolves, and the impacts on remaining trees 
and CZ processes to address research questions including: (a) What are the best areas to thin to promote water 
and low intensity wildlife, while reducing fuels? (b) How does understory respond to forest removal? (c) Are the 
remaining trees more resilient to drought and water stress following removal of nearby trees? Linking remote 
sensing of fuel treatment with measurements of response variables of interest, such as burn severity (Petrakis 
et al., 2018) or hydrologic variables such as snowpacks (Belmonte et al., 2021), can provide insight into fuel treat-
ment impacts. Assimilating remote sensing of canopy structure (Hanan et al., 2018) and fuel treatment changes to 
canopy structure into process-based models (Saksa et al., 2020) can also improve our estimates of fuel treatment 
benefits and their spatial-temporal heterogeneity.

We show how different remote sensing-based measurements characterize fuel treatment changes to forest struc-
ture at Sagehen Creek Experimental Forest (SCEF), a 36.4-km 2 watershed located in the Tahoe National Forest, 
central Sierra Nevada, California. SCEF has been managed by the US Forest Service to survey forest structure 
and test innovative forest management strategies for conducting fuels treatments. Vegetation treatments were 
applied to over 10.5 km 2, in various combinations of mechanical thinning, mastication, and underburning. Spec-
tral vegetation indices estimate substantial thinning between 2014 and 2020 (Figure 8). In addition to canopy 
loss with thinning, canopy height metrics derived from lidar show growth in untreated forests and in remain-
ing conifers in the treated area (Figures  8a and  8b). Coarse-scale vegetation indices, such as Landsat NDVI 
(Figure  8c), do not resolve these tree scale responses. Spatial distribution of the airborne NDVI (Figure  8d) 
resembles those of the lidar canopy difference metrics (Figures 8a and 8b). The availability of high-resolution 
lidar data allows forest thinning treatment to be represented as not only a change in leaf area index (LAI) but also 
how thinning impacts canopy gaps, and distributions of remaining tree heights. This more realistic representation 
of canopy structural changes, particularly the inclusion of gaps, can have important implications for ecohydrolog-
ical estimates, including changes in snowpack, increased transpiration of remaining trees and evaporative losses 
(Tsamir et al., 2019).

Hyperspectral imagery offers the potential to revolutionize our understanding of coupled ecohydrological 
responses of mountain ecosystems to drought, extreme fire, and snowpack change. In evergreen conifers, such as 
those common throughout ICB (Figure 7) and SCEF (Figure 8), the foliage changes minimally throughout the year 
because there is little seasonal variation in chlorophyll content, making satellite remote sensing of photosynthetic 
phenology challenging. NDVI can only measure the greenness of trees, which does not vary much across seasons, 
while CCI is a proven method of tracking conifer phenology by measuring carotenoid pigments, which vary by a 
factor of ∼2–3 throughout the year (Wong et al., 2019). Remotely sensed CCI has provided a method of observing 
evergreen photosynthetic activity from optical remote sensing across multiple spatial scales. Studies have used 
AVIRIS (Green et al., 1998) and demonstration satellite missions (e.g., Hyperion) (Middleton et al., 2013) to 
calculate CCI, but there is currently no frequent global coverage CCI product. Proposed satellite-based imaging 
spectrometers could help monitor CCI changes from space, but we are currently using airborne platforms to 
provide CCI temporal and spatial coverage.

3.5. Drought and Water Stress

Understanding and predicting the drivers of water stress on plant health and productivity is critical in light of 
increasing drought events from climate change (Meehl & Tebaldi, 2004). Derived estimates of plant phenology 
and gross primary productivity from satellite remote sensing depend solely on the spectral reflectance of the 
surface, and do not consider soil water conditions (Lowman & Barros,  2016,  2018). However, satellite esti-
mates may be improved by assimilating the data into models that incorporate soil water stress (Lowman & 
Barros, 2018). This approach can potentially reinforce remote sensing observation of physiological responses to 
water stress. Specific research questions include: (a) How do data assimilation and phenology modeling improve 
remote sensing observation of drought? (b) How is water stress linked to forest growth and mortality? (c) How 
does a changing climate affect forest vulnerability to water stress?
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We present a drought case at the Mountainair Pinyon-Juniper Woodland AmeriFlux site (US-Mpj) in New Mexico 
to investigate how changes in atmospheric aridity and soil moisture during drought influence plant photosynthetic 
pathways. This analysis combines data assimilation and phenology modeling techniques to determine the ranges 
of VPD and soil moisture that indicate water stress limitations on photosynthesis, but not complete plant mortal-
ity (Lowman & Barros,  2018). Specifically, by assimilating MODIS fraction of absorbed photosynthetically 
active radiation (FPAR) and LAI data to a prognostic phenology model using a dual parameter-state Ensemble 
Kalman Filter, we estimate threshold values at which photosynthesis shuts down at minimum VPD (VPDmin) and 
soil moisture (SMmin), and when photosynthesis is uninhibited at maximum VPD (VPDmax) and soil moisture 
(SMmax). These limits define the range for suboptimal photosynthetic function and differ from wilting point, the 
soil moisture level at which cavitation occurs in plants, and field capacity, a soil hydraulic property. AmeriFlux 
and MODIS GPP data were used to evaluate changes in plant photosynthesis rates. This analysis used soil mois-
ture data from the root-zone soil moisture merging project (SMERGE) and climate data for temperature, specific 
humidity, and vapor pressure from Phase 2 of the North American Land Data Assimilation System (NLDAS-2) 
Forcing File A, both at 0.125° spatial resolution. The years 2013–2015 were selected as the assimilation period, 
as it encompassed both wet and dry conditions for the US-Mpj site. Results for a dry (2013) and wet (2015) water 
year demonstrate how this technique may be used to determine primary drivers for reduced photosynthesis during 
drought.

Figure 8. Spatial distribution of the 2014–2020 difference in (a) lidar-based canopy height, (b) lidar-based canopy density, 
(c) Landsat NDVI, (d) NAIP NDVI, (e) AVIRIS NDVI, and (f) AVIRIS CCI in Sagehen Creek Experimental Forest. The 
NAIP true color composites visually illustrate progressive changes in tree density from (g) 2014 to (h) 2020.
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The modeling technique determined the ranges of VPD and soil moisture between which stomata are completely 
open (VPDmax = 3.20 kPa, SMmax = 0.30 m 3 m −3) and fully closed (VPDmin = 1.43 kPa, SMmin = 0.20 m 3 m −3) 
for the corresponding NLDAS grid cell. Between mid-May and late July in 2013, soil moisture fell below SMmin 
and VPD exceeded VPDmax (Figure 9). Both soil water stress and dry atmospheric conditions contributed to near 

Figure 9. Time series of vapor pressure deficit (VPD), soil moisture, and gross primary productivity (GPP) for a forested 
mountain site in New Mexico (US-Mpj) in 2013 (dry year) and 2015 (wet year). The horizontal gray lines mark the 
suboptimal range for photosynthesis determined by assimilating MODIS FPAR/LAI data to a phenology forecasting model. 
Gray shading in 2013 plots highlights a period of drought stress.
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and complete shutdown of photosynthesis during this period (Figure 9). Soil water stress remained below SMmin 
for an extended period between February and July, and for shorter periods in September, October, and November. 
In June, there were two short periods where VPD exceeded VPDmax. In both cases, soil water stress served as the 
primary driver for reductions in plant photosynthesis rates. The AmeriFlux GPP data show that photosynthesis 
rates were severely reduced during the period where both soil moisture falls below SMmin and VPD exceeds 
VPDmax (Figure 9). The MODIS GPP data did not show the same reduction in plant productivity, because the 
satellite remote sensing product did not account for changes in soil moisture that influence plant photosynthesis 
(Lowman & Barros, 2016, 2018).

During the 2015 wet year, there were no sustained mid-season reductions in GPP (Figure 9). Zero and near-zero 
reductions in GPP in the growing season only occurred during the dry year (2013) when both VPD exceeded 
VPDmax and soil moisture fell below SMmin (Figure 9). In 2015, there were no periods where VPD exceeded 
VPDmax, hence the area was never under combined soil moisture and atmospheric stress. There were short periods 
throughout 2015 where soil moisture fell below SMmin, and these were associated with small, short duration drops 
in GPP. The regional-scale estimates may have greater uncertainty in mountainous regions with averages over 
highly complex topography, where vegetation conditions can change rapidly along altitudinal gradients within a 
single pixel (Bolstad et al., 2001; Giorgi & Avissar, 1997).

4. Recommendations for Future Research and Application
Exploring the disturbance cases with new remote sensing approaches in Section 3 highlights new opportuni-
ties for observing CZ response to disturbance. The case studies demonstrate the value of new sensor-platform 
combinations to spatially resolve disturbance severity, post-disturbance change, and intensive forest management 
at multiple time scales. Given the importance of forest management and disaster prevention, there is a growing 
need for regular observation campaigns, which requires federal and state governments to cooperate with both 
public (e.g., NASA, US Department of Agriculture) and private (e.g., Airborne Snow Observatories, Inc, Planet 
Labs) stakeholders to ensure continuous funding and maintenance of these monitoring programs. Technological 
advances in sensors and platforms reinforced detection of specific physiological responses and understory vege-
tation regrowth. In-situ observations and data analysis techniques helped identify forest recovery processes and 
refine ecohydrological modeling. In this section, we suggest how these advances can be integrated with existing 
knowledge and resources. In particular, we discuss how new findings from new platform-sensor combinations 
can be incorporated into broadening our observational capabilities in CZ processes.

4.1. New Data Analysis With New or Existing Sensors

Advances in sensor technologies enable estimation of environmental metrics that until now were only possible 
through field or lab analysis at much finer scales. This data acquisition can be achieved by innovative sensor 
and algorithm development. New variables including canopy water content from microwave data (Konings 
et al., 2017, 2019) and subsurface water storage from gravimetry sensors (Geruo et al., 2017; Yang et al., 2014) 
complement existing campaigns with new algorithms. Ground-based remote sensing data including a cosmic-ray 
neutron probe (Andreasen et al., 2017; Desilets et al., 2010) and soil moisture retrieval from global positioning 
system (GPS) signals (Larson, 2016; Larson et al., 2008) can not only evaluate intensive forest management but 
unravel drivers of forest regrowth processes.

With capabilities of observing very narrow bandwidths, hyperspectral data have the potential to capture signals 
that conventional remote sensing instruments cannot detect. Hyperspectral imagery has been increasingly used 
to refine predictability of physiological activities with detailed estimation of fuel type and condition, vegetation 
recovery process (Veraverbeke et al., 2018), vegetation health (Tane et al., 2018), water stress, and carbon uptake 
(Asner et al., 2004). Ongoing and upcoming hyperspectral missions including Copernicus Hyperspectral Imaging 
Mission for the Environment (CHIME), HISUI, High-resolution Temperature and Spectral Emissivity Mapping 
(HiTeSEM), Surface Biology and Geology (SBG), Environmental Mapping and Analysis Program (EnMAP), 
PRISMA, and Fluorescence Explorer (FLEX) are expected to contribute to reliable assessment of vulnerability 
to disturbance, disturbance intensity, and post-disturbance forest recovery.
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4.2. Data Fusion Across Multiple Sensors and Platforms

Multiple sensor types can acquire land surface and vegetation variables that are not available to estimate from 
a single remote sensing source. However, effective implementation of the multi-sensor integration is relatively 
underexplored due to inconsistent spatio-temporal resolution and coverage, and different monitoring trajectories. 
Data fusion of multiple platform products continuously improves with increasing data availability. Past data 
fusion techniques have used the same sensor types (e.g., multispectral images) to produce spatially and tempo-
rally disaggregated images in an extended period (Gao et al., 2006; Ghosh et al., 2020; Hilker et al., 2009; Roy 
et al., 2008; Schmidt et al., 2015; Yang et al., 2020; Zhu et al., 2010). For instance, modern platform sensors 
have fine spatio-temporal resolutions that can be harmonized and merged with satellite products that have long 
observation records to derive biophysical variables and to evaluate historical disturbance processes and responses 
at various scales.

Because CZ processes develop across the atmosphere-land surface-subsurface continuum, the complexity of 
responses and interactions with disturbance needs comprehensive investigation. Integration of multiple sensors 
or platforms can provide advantages such as (a) greater capability of addressing complex environmental feedback 
to disturbance facilitated by multivariate retrievals (Hao & AghaKouchak, 2013; Hao & Singh, 2015), (b) exten-
sive spatio-temporal coverage of the remote sensing data (van Leeuwen et al., 2006), (c) deployment of multiple 
sensors, especially with small satellite constellations (McCabe, Aragon, et al., 2017; Woellert et al., 2011), for 
real-time observation with higher spatio-temporal resolution (Gao et al., 2006; McCabe, Rodell, et al., 2017; Pohl 
& van Genderen, 1998; Zhu et al., 2010), and (d) more robust analysis with cross validation and reduced uncer-
tainty (Jiao et al., 2021). Previous and current airborne campaigns, including the Airborne Snow Observatory 
(ASO), Global Airborne Observatory (GAO), National Center for Airborne Laser Mapping (NCALM), SnowEx, 
and the National Ecological Observatory Network (NEON) Airborne Observation Platform (AOP), use lidar 
and spectral sensors to monitor changes in land surface (e.g., soil, snow) and vegetation properties. In particular, 
recently launched airborne forest monitoring campaigns (e.g., NEON AOP) are based on simultaneous data 
acquisition of spectral (for physiological attributes) and laser (for biophysical attributes) data in the same flight 
(Table 2). Moreover, the private sector plays a vital role in increasing spatio-temporal coverage and improving 
the reliability of data fusion through UAV and ground observation projects to meet the growing demand for 
high-resolution products. For example, value-added information on water supply forecasting for reservoirs (e.g., 
Airborne Snow Observatories, Inc.) and agriculture (Weiss et  al.,  2020) are stimulating new companies and 
technologies.

Simultaneous observations with multiple sensors may also result in estimating new variables that have not yet 
been possible to acquire with a single instrument. The remaining questions include a direct/indirect connection 
between biophysical and biochemical attributes from new sensor combinations, such as post-disturbance changes 
in forest structure (Meng et al., 2018; Sankey et al., 2017), sediment/nutrient transport (Sankey et al., 2021), 
canopy water content (Asner et al., 2015; Paz-Kagan et al., 2018; Swatantran et al., 2011), habitat characteristics 
(Vogeler et al., 2016), and canopy water stress (Coates et al., 2015; Sankey & Tatum, 2022) using hyperspectral 
data. Upcoming satellite missions including SBG, HyTI, CHIME, and BIOMASS, which are expected to provide 
extensive observations of the land surface and vegetation with a variety of sensor suites. In particular, hyperspec-
tral missions have the great potential for detailed observation of plant responses to disturbance in combination 
with lidar (Degerickx et al., 2018; Ramirez et al., 2018; Sankey et al., 2018; Shivers et al., 2019; Sobejano-Paz 
et al., 2020). Because each platform has unique benefits, innovative methods can be applied to leverage these 
opportunities.

4.3. Increasing the Value of Ground-Based Observations

Few field networks effectively integrate remote sensing into larger CZ understanding or are used rigorously 
for remote sensing validation efforts. Furthermore, advances in remote sensing in CZ science often demand 
integrative approaches with other tools (e.g., physically based models) and observations (e.g., in-situ observa-
tions and multiple remote sensing products). Substantial ground truth data from in-situ surveys are required for 
remote sensing modeling of environmental variables and change detection (Steininger, 2000). Despite a wide 
variety of ground-based observations, remote sensing-based investigation of the forest response to disturbance 
is limited due to the lack of coordinated use of multidisciplinary data collection. For modeling regional tree 
species with different physiological traits during their growth stages, empirical or allometric approaches often 
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depend heavily on ground-based observations of canopy height and diameter at breast height (DBH) (Badreldin 
& Sanchez-Azofeifa, 2015). Growing remote sensing capabilities with technological advances enable estimation 
of new ecohydrological and biogeochemical variables that can ultimately be incorporated with in-situ measure-
ments to provide greater value, such as species richness (Anderson et al., 2021). Because different platforms and 
sensors have different capabilities in elucidating ecohydrological processes in the CZ, a long record of continuous 
ground-based observations at a dense network of core watersheds is necessary. The recently launched CZCN is 
designed to promote centralized field and remote data collection for comparative interdisciplinary studies. As 
ground-based data are rarely available for selected core sites, intensive site-based investigations would effectively 
enhance ecohydrological modeling and verify remote sensing estimation. The network will be extremely useful 
to expand opportunities for remote sensing campaigns and greater availability of ground-based observations 
(Harpold et al., 2015).

4.4. Disturbance Modeling

Greater diversity of remote sensing data and estimated variables can improve the prediction of the disturbance 
models. Dynamic forest modeling is typically based on the assumption that vegetation distribution is uniform 
in its maturity and physiological attributes across the watershed (Ajami et al., 2014; Shi et al., 2013). Incorpo-
ration of the distributed physiological status can improve model performance for heterogeneous landscape and 
non-steady-state conditions (Hanan et al., 2018). Remote sensing data from a new sensor-platform combination 
can resolve these spatial and temporal constraints and ultimately enhance the modeling accuracy and under-
standing of the environmental processes over multiple spatial and temporal scales. In specific, benefits of the 
high-resolution remote sensing data (e.g., PlanetScope and airborne/UAV data) include more reliable model 
calibration of ecophysiological parameters with regard to disturbance histories (Francini et al., 2020). A remotely 
sensed vegetation variable (e.g., LAI, stem wood) can help initialize the model conditions and biogeochemical 
pools (Hanan et  al.,  2018). Data assimilation can improve model initialization of disturbance histories (Luo 
et al., 2011). Remote sensing-based analysis can be used to evaluate modeled forest response to disturbance.

Along with exponentially increasing data volume and processing capabilities, emerging big data tools (e.g., data 
assimilation, machine learning, cloud computing) can produce reliable products over decades or longer. These 
methods are especially useful to estimate physiological responses to disturbance, such as vegetation health (Tane 
et al., 2018), forest mortality (Hart & Veblen, 2015; Rao et al., 2019), and carbon transfer (Williams et al., 2005; 
Yan et  al.,  2016), in areas with a lack of established biophysical relationships. The enhanced environmental 
monitoring with extensive coverage would ultimately benefit more robust forest management and disturbance 
assessment (Skole et al., 2021).

4.5. Synthesis: Putting It All Together to Improve Understanding of Disturbance

Synthesis of these conceptual and technical developments would contribute to comprehensive understanding 
of how CZ structure interacts with disturbance in montane forests. In this paper, we have shown how remote 
sensing can be used to provide insight into how climatic and human-driven disturbances (e.g., fire, drought, 
flood, and direct human modification of forests) can alter CZ structure. Most of this work has focused on how 
disturbance changes montane forest structure (e.g., cover, height, density) and species composition, or in the case 
of flood-driven erosion, how surface topography changes. A key contribution of remote sensing is the ability to 
track post-disturbance changes to vegetation and surface topography over time. The field is poised to link surface 
CZ structural changes with CZ function—carbon sequestration, water use, habitat provisioning by combining 
remote sensing with other datasets and models. From our examples, it is clear that disturbance intensity (e.g., a 
high-severity fire vs. a low-intensity thinning or drought event) and location within the heterogeneous montane 
forest landscapes (e.g., locations along regional climate gradients and locally between south- and north-facing 
aspects, or in locations with deep vs. shallow soils) interact to determine how the CZ functions regrow and evolve 
over time following disturbance. While many disturbances initially increase runoff and reduce evapotranspira-
tion, magnitude and persistence of this effect varies with both disturbance intensity and local biogeoclimatic 
setting (Hanan et al., 2021; Tague & Moritz, 2019). More work is needed to develop a comprehensive theory of 
disturbance impacts that considers these space-time complexities. High spatio-temporal resolution remote sens-
ing will be an essential for evolving this comprehensive picture.
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Finally, we acknowledge that what is missing from this work is the integration of the subsurface. Some recent 
work has clearly showed that subsurface CZ structure can play a key role determining forest responses to distur-
bances (Callahan et al., 2022; Tague & Moritz, 2019). However, a myriad of unresolved questions in the CZ are 
based on two-way connections between subsurface properties and physiological response (Bloschl et al., 2019; 
Brantley et al., 2017; Fan, 2015). We know little, for example, about how multi-decade disturbance frequencies 
such as fire regimes, might influence subsurface weathering through impacts on root networks of different vege-
tation communities that are altered by fire. While direct remote sensing of the subsurface structure, particularly 
in steep forested montane regions, poses a challenge, regular remote sensing observations (e.g., subdaily, daily, or 
weekly) over decades can help to inform co-evolution models by offering trajectories of vegetation change. For 
instance, California Forest Observatory integrates a variety of satellite remote sensing sources (e.g., atmosphere, 
vegetation, topography) to provide a regional forest monitoring system.

Data Availability Statement
The ground-based GPP and NEE data from eddy covariance towers are available from AmeriFlux 
(Litvak, 2022a, 2022b). The aerial image-based vegetation cover data are available through Boisrame, Thompson, 
Kelly, et  al.  (2017). The Landsat burn severity data are available from the MTBS program (Eidenshink 
et al., 2007). The MODIS GPP, Landsat NDVI, NAIP, and NLDAS-2 climate data are available from Google 
Earth Engine (Gorelick et al., 2017). The SMERGE soil moisture data are available from NASA Earthdata (Crow 
& Tobin, 2018). The AVIRIS data are available from the AVIRIS Data Products Portal (Vane et al., 1993). The 
lidar data are available from OpenTopography (NCALM, 2012, 2014; USGS, 2022) and Oak Ridge National 
Laboratory Distributed Active Archive Center (Xu et al., 2018).
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