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A B S T R A C T   

Hydrological storm events are a primary driver for transporting water quality constituents such as suspended 
sediments and nutrients. Analyzing the concentration (C) of these water quality constituents in response to river 
discharge (Q), particularly when monitored at high temporal resolution during a hydrological event, helps to 
characterize the dynamics and flux of such constituents. A conventional approach to storm event analysis is to 
reduce C-Q time series to two-dimensional (2-D) hysteresis loops and analyze these 2-D patterns. While infor-
mative, this hysteresis loop approach has limitations because projecting the C-Q time series onto a 2-D plane 
obscures detail (e.g., temporal variation) associated with the C-Q relationships. In this paper, we address this 
limitation using a multivariate event time series (METS) clustering approach that is validated using synthetically 
generated event times series. The METS clustering is then applied to river discharge and suspended sediment data 
(acquired through turbidity-based monitoring) from six watersheds in the Lake Champlain Basin located in the 
northeastern United States, and results in identifying four common types of hydrological water quality events. 
Statistical analysis on the events partitioned by both methods (METS clustering and 2-D hysteresis classification) 
helped identify hydrometeorlogical features of common event types. In addition, the METS and hysteresis 
analysis were simultaneously applied to a regional Vermont dataset to highlight the complimentary nature of 
using them in tandem for hydrological event analysis.   

1. Introduction 

Characterizing the processes associated with rainfall-runoff events is 
an essential part of watershed research; and studying the dynamics that 
drive these processes (e.g., the timing and location of water quality 
constituent fluxes through the landscape) has many applications in the 
hydrological sciences. These include identifying sources of erosion 
present in a watershed (Sherriff et al., 2016), monitoring for shifts in 
watershed function (Burt et al., 2015), improving hydrological model 
forecasts (Ehret and Zehe, 2011), and informing watershed conservation 
and management efforts (Bende-Michl et al., 2013; Chen et al., 2017). 
Environmental managers and scientists often analyze hydrological data 
(e.g., suspended sediment concentration and streamflow) at an event 
scale – in this work, the period of storm-runoff resulting from a rainfall 
event – because this period is the primary mechanism for transporting 
many constituents of concern (Dupas et al., 2015; Sherriff et al., 2016). 
The timing of constituent delivery relative to stream discharge is com-
plex and often exhibits a high degree of variability, especially when the 

monitoring frequency is high (Minaudo et al., 2017); and unsurprisingly, 
the relationship between multiple responses during a single event (e.g., 
discharge and water quality constituents) is often not linear (Onderka 
et al., 2012). However, despite the inherent complexity and dynamic 
behavior, the analysis of concentration-discharge (C-Q) relationships to 
infer mechanistic watershed processes at the event scale has a long 
tradition in hydrology, geomorphology and ecology (Aguilera and 
Melack, 2018; Burns et al., 2019; Williams et al., 2018; Malutta et al., 
2020). 

A fundamental feature of suspended sediment and solute transport in 
rivers is that the concentration of such constituents is often not in phase 
with the associated stream discharge, resulting in hysteresis being 
observed in the C-Q relationship. Williams (1989) was one of the first to 
use hysteresis patterns to study hydrological storm events, identifying 
six classes of hydrological events and offering linkages between the 
hysteresis classes and watershed processes. While the study focused on 
suspended sediment concentration (SSC) data, these event classifica-
tions have been widely adopted in studies of both sediment and solutes, 
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and continue to be used today to group storm events (e.g., Aguilera and 
Melack, 2018; Rose et al., 2018; Keesstra et al., 2019). An alternate to 
using 2D hysteresis patterns for categorization is to simplify the C-Q 
relationship into a scalar hysteresis index (Lloyd et al., 2016b). While 
both approaches are effective for inferring certain physical processes, 
each loses some information associated with the raw time series data, 
because both approaches “collapse” the time dimension, either by pro-
jecting the C-Q data onto a two-dimensional plane, or reducing the in-
formation into a scalar value (an index). Thus, temporal information 
associated with the original times series, such as the rate of change of a 
variable as well as aspects of its shape (e.g., linear, convex, concave), 
may be lost. With the increasing availability of high frequency sensors 
and associated data processing tools, it is now possible to leverage the 
temporal information embedded in multiple time series and fuse the 
data with complementary event analysis schemes such as hysteresis loop 
classification (Williams, 1989). 

A few hydrological studies have used univariate time series (e.g., 
discharge) to quantify the similarity between storm events for fore-
casting purposes. Ehret and Zehe (2011) used manual feature extraction 
to propose a similarity measure for discharge time series that leverages 
hydrograph attributes such as the rising limb, peak and receding limb. 
Such manual feature extraction works well for hydrographs, but may not 
generalize to multivariate water quality time series. Ewen (2011) 
modified the minimal variance matching algorithm (Latecki et al., 2005) 
to quantify the similarity between two hydrographs. Presented with a 
hydrograph defined by a sequence of discharge measurements (called a 
“query sequence”), the method finds a target hydrograph that contains a 
sub-sequence most similar to the query sequence. Because only a portion 
of the target sequence is matched (Latecki et al., 2005), similarity is not 
symmetric in both directions [i.e., d(x,y)! = d(y,x)] and, hence, may not 
be appropriate for use in clustering hydrological event data. Wendi et al. 
(2019) used recurrence quantification analysis and cross-recurrence 
plots to measure similarity between recurring hydrograph patterns. 
Recurrence quantification analysis is useful for large flood events 
(particularly those with multiple peaks); however, when the events are 
delineated, as is done in our work, the approach may not be appropriate. 
Regardless, none of the above classification methods were designed for 
analyzing events with multivariate time series. 

Several studies have clustered storm events using event metrics and/ 
or coefficients of best fit models. Dupas et al. (2015) used dynamic time 
warping (DTW) and K-means clustering to cluster re-scaled time series of 
phosphorus concentration. They manually select an ideal hydrograph 
and use the DTW algorithm to align each hydrograph in the dataset to 
the ideal hydrograph. Using these aligned hydrographs, the respective 
event phosphorus concentration graphs are then clustered to find 
dominant response patterns associated with physical processes occur-
ring in the watershed. Bende-Michl et al., 2013 used high frequency data 
to build a database of events summarized by metrics such as precipita-
tion, discharge, runoff coefficient and maximum discharge. These met-
rics were then used in cluster analysis to study nutrient dynamics in the 
Duck River, in north-western Tasmania, Australia. Minaudo et al. (2017) 
applied the non-linear empirical modeling method of Mather and 
Johnson (2014) using continuous records of turbidity and discharge to 
estimate high frequency phosphorus concentration values from low 
frequency (e.g., weekly) sampling. They then clustered storm events 
using sets of model coefficients that were fit to each storm event. The 
coefficients were re-calibrated for each cluster to obtain one set of co-
efficients representative of all storm events in the cluster. Mather and 
Johnson (2015) modeled event turbidity as a function of event discharge 
using a power-law model, and performed cluster analysis on the model 
parameters to select the number of hysteresis loop categories, thereby 
avoiding a priori selection of the number of classes. While all of these 
works extract event information from two monitored variables (e.g., C 
and Q), none directly use the full time series (i.e., without trans-
formation or feature extraction) associated with both variables to cluster 
storm events. 

In this paper, we present a data-driven approach for clustering 
multivariate water quality time series at the event scale. We refer to this 
method as METS (multivariate event time series) clustering throughout 
the remainder of the manuscript; and show proof-of-concept using two 
variables: concentration (C) and discharge (Q). These time series may be 
visualized as trajectories in a 3-D space, namely a C-Q-T plot. Our 
concentration data comprise three years of high-resolution riverine 
suspended-sediment concentration (SSC) time series – for generaliz-
ability, referred to simply as C – collected from six watershed sites in 
Vermont. The efficacy of the approach is demonstrated both qualita-
tively, using multi-dimensional visualizations (i.e., C-Q-T plots), and 
quantitatively using metrics that summarize event characteristics. We 
also highlight the complementary nature of using METS in tandem with 
other analysis schemes, in this work – such as the C-Q hysteresis patterns 
of Williams (1989). 

2. Study area and data 

Our study area, located in the Mad River watershed (Fig. 1) in the 
Lake Champlain Basin and central Green Mountains of Vermont, is the 
site of several ongoing geomorphic and sediment dynamics studies at the 
University of Vermont (Stryker et al., 2017; Wemple et al., 2017; 
Hamshaw et al., 2018). Continuous streamflow and suspended sediment 
monitoring data (SSC) were collected for more than 600 storm events in 
this watershed (and its five sub-watersheds) between October 19th, 
2012 to August 21th, 2016 (Table 1). Hamshaw et al. (2018) used this 
dataset to automate and demonstrate possible refinements to the 2D (C- 
Q) hysteresis classifications of Williams (1989). Turbidity data were 
collected every 15 min using turbidity sensors and SSC-turbidity 
regression models were used to calculate SSC (see Hamshaw et al., 
2018 for details). Discharge data were obtained from the United States 
Geological Survey (USGS) stream gauges or calculated using stage- 
discharge rating curves. The individual storm events were extracted 
from the continuous sensor records using a semi-automated approach 
based on thresholds to detect events and manual identification of storm 
end points. Meteorological data (rainfall and soil moisture) were also 
collected over the monitoring period and summarized into 24 storm 
event metrics (see Table 2); for full details on data collection and event 
delineation methodology, readers are referred to Hamshaw et al. (2018). 

The Mad River watershed ranges in elevation from 132 m to 1,245 m 
above sea level and is predominantly forested except for the valley 
bottom, which features agriculture, village centers, and other developed 
lands (Supporting Information Table S1). The watershed has a mean 
annual precipitation ranging from approximately 1,100 mm along the 
valley floor to 1,500 mm along the upper watershed slopes (PRISM, 
2019). Soils range from fine sandy loams derived from glacial till de-
posits in the uplands to silty loams from glacial lacustrine deposits in the 
lowlands. Erosional watershed processes include bank erosion, agricul-
tural runoff, unpaved road erosion, urban storm water, and hillslope 
erosion. Similar to many watersheds in Vermont, reducing excessive 
erosion and sediment transport in the Mad River is a focus of several 
management efforts including stormwater management practices, 
streambank stabilization and river conservation. 

In addition to the Mad River watershed sites, we created an expanded 
regional dataset by adding 190 events from three additional watersheds 
(Hungerford Brook, Allen Brook, and Wade Brook) in the Lake Cham-
plain Basin to the existing (n = 603) Mad River events, and another 21 
events from within the Mad River watershed during the period from 
April 3rd,2007 to November 25th, 2016. This results in a total of 814 
storm events from nine watersheds, hereafter referred to as the “regional 
Vermont dataset”. Hungerford Brook, Allen Brook, and Wade Brook are 
watersheds with ongoing monitoring efforts (Vaughan et al., 2017) that 
represent a spectrum of land uses (e.g., agricultural, forested, and 
developed, respectively) and feature varied topographic characteristics 
(Supporting Information Table S1). Data from these sites, and supple-
mental events from the Mad River do not have the corresponding 
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hydrometeorological data metrics associated with the Mad River dataset 
and thus were not the focus of our primary analyses. 

3. Methods 

3.1. Event time series processing 

The sensor data collected during individual storm events are 
conceptualized as trajectories and may comprise multivariate time series 
of two or more variables. For example, two (univariate) time series, 
TS1 = 〈V11,V12,V13,…,V1n〉 and TS2 = 〈V21,V22,V23…,V2n〉, when 
combined, make a bivariate time series TS = 〈(V11,V21),(V12,V22),…,

(V1n,V2n)〉. This approach can be generalized to the multivariate case of 
a matrix of m variables and n time steps (Supporting Information 
Fig. S1). 

The time series in this work (discharge and SSC) were collected in situ 
using multiple environmental sensors. These data typically contain 
noise, have missing values, and often require pre-processing (i.e., 
filtering) to extract general trends in the C-Q relationship. In addition, 
because of our interest in comparing C-Q relationships across hydro-
logical events, we normalized both the length of the time series as well 
as the magnitude of each variable individually over each event (Fig. 2), 
as is commonly done in C-Q analyses. Pre-processing steps were per-
formed as follows: 

Smoothing: To reduce noise, the discharge and concentration time 
series were smoothed using the Savitsky-Golay Filter (Savitzky and 
Golay, 1964). We selected a third-order, 21-step filter for the Mad 
River (main stem) and a fourth-order, 13-step filter for each of the 

five sub-watersheds. To preserve the peaks and overall shape of the 
event data, the filter order and step size were selected based on visual 
inspection of the resulting event time series in a manner similar to 
Hamshaw et al. (2018). 
Standardization of event length: Discharge and concentration time 
series were re-scaled to a uniform length of 50 time steps for all 
events using univariate spline fitting (Dierckx, 1993). The number 50 
was selected empirically as the minimum number of data points that 
preserves the shape and characteristics of the event time series. 
Standardizing all events to have the same length ensured that 

Fig. 1. The Mad River watershed and study sub-watersheds within the Lake Champlain Basin of Vermont.  

Table 1 
Number of storm events and monitoring start and end dates for each watershed 
study site.  

Site Number of events 
monitored 

Monitoring start 
date 

Monitoring end 
date 

Freeman Brook 54 Jun 2nd,2013  Nov 17th,2013  
Folsom Brook 96 Jul 17th,2013  Sept 13th,2015  
Mill Brook 158 Oct 19th,2012  Dec 23rd,2015  
High Bridge 

Brook 
41 Jun 6th,2013  Nov 17th,2013  

Shepard Brook 106 Jul 18th,2013  Dec 23rd,2015  
Mad River (main 

stem) 
148 Oct 29th,2012  Aug 21th,2016  

All Sites 603 Oct 19th, 2012 Aug 21th, 2016  

Table 2 
Description of the 24 storm event metrics used in this work.  

Metric Description 

Hydrograph/ Sedigraph characteristics 
TQ  Time to peak discharge (hr) 
TSSC  Time to peak SSC (hr) 
TQSSC  Time between peak SSC and peak discharge (hr) 
QRecess  Difference in discharge value at the beginning and end of event 
SSCRecess  Difference in SSC value at the beginning and end of event 
DQ  Duration of stormflow (hr) 
FI Flood intensity 
SSCPeak  Peak SSC (mg/L) 
HI Hysteresis index  

Antecedent conditions 
TLASTP  Time since last event (hr) 
A3P 3-Day antecedent precipitation (mm) 
A14P 14-Day antecedent precipitation (mm) 
SMSHALLOW  Antecedent soil moisture at 10 cm depth (%) 
SMDEEP  Antecedent soil moisture at 50 cm depth (%) 
BFNORM  Drainage area normalized pre-storm baseline flow(m3/s/km2

)

Rainfall characteristics 
P Total event precipitation (mm) 
Pmax  Maximum rainfall intensity (mm/hr) 
DP  Duration of precipitation (hr) 
TPSSC  Time between peak SSC and rainfall center of mass (hr)  

Streamflow and sediment characteristics 
BL Basin lag 
QNORM  Drainage area normalized stormflow (m3/s/km2)  
Log(QNORM)  Log-normal stormflow quantile (%) 
SSLNORM  Drainage area normalized total sediment (kg/km2)  
FLUXNORM  Drainage area and flow normalized sediment flux (kg/m3/km2)   

A. Javed et al.                                                                                                                                                                                                                                   



Journal of Hydrology 593 (2021) 125802

4

clustering was not affected by the duration of the event but by the 
relative rate of change of C-Q variables. We note that this re- 
sampling was performed separately from the calculation involving 
event metrics (Table 2) based on the original data. 
Normalization of magnitude: The discharge and concentration time 
series were scaled individually to values between 0 and 1. This 
ensured that the clustering is not affected by the magnitude of the 
individual time series but by the orientation of change (e.g., clock-
wise and counter-clockwise), and the shape (e.g., linear, convex and 
concave). Normalizing the magnitude of variables is common for a 
meaningful comparison between time series (Rakthanmanon et al., 
2012). 

3.2. Concentration-discharge (C-Q) Hysteresis Classification 

Each hydrological event in our dataset was categorized visually (by 
two or more domain experts) into one of the six hysteresis classes (Fig. 3) 
of Williams (1989). Class I represents linear C-Q relationships that show 
little hysteretic behavior, whereas Class II and Class III represent 
clockwise and counter-clockwise hysteretic behaviors, respectively. A C- 

Q plot exhibiting a linear relationship followed by a clockwise loop is 
indicative of Class IV behavior. These patterns could reasonably be 
considered a special case of Class II (clockwise hysteresis); and rarely are 
studied as a separate hysteresis category (Malutta et al., 2020). The 
figure-eight loops are represented as Class V. Events that do not fall into 
any of these five classes are placed into a class labeled “Complex”. 

3.3. Multivariate event time series clustering 

Clustering of the multivariate time series data at the storm event 
scale was a first step in exploring linkages between storm event re-
sponses (i.e., C-Q dynamics) and watershed processes. To this end, a 
number of clustering methods were investigated. Paparrizos and Grav-
ano (2017) conducted extensive benchmark tests using four clustering 
algorithms (partitional, hierarchical, spectral, and density-based) and 
three distance measures – Euclidean distance, dynamic time warping of 
Sakoe and Chiba (1978), and shape-based (Paparrizos and Gravano, 
2016). All of the datasets (85 in total) available in the University of 
California at Riverside (UCR) time series archive (Dau et al., 2018) at the 
time of their publication were used in the benchmark; they identified K- 

Fig. 2. Pre-processing of (a) raw C and Q time series, (b) smoothed and normalized C and Q time series, and the resulting (c) C-Q plot, and (d) C-Q-T plot for an 
individual (delineated) storm event. 

Fig. 3. Six class scheme for concentration-discharge hysteresis loops (top panels) and corresponding hydrographs and sedigraphs (lower panels, solid and dot-dashed 
lines, respectively). 
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medoids with dynamic time warping (DTW) (discussed in Section 3.3.1 
and Section 3.3.2, respectively) as having achieved the highest adjusted 
Rand index across the greatest number of datasets. Leveraging their 
work, we conducted additional benchmark tests using the four algo-
rithms on their short list — TADPole (Begum et al., 2015), K-shape 
(Paparrizos and Gravano, 2016), K-medoids with DTW, and K-medoids 
with Euclidean. Using all datasets (currently 128 in total) available in 
the UCR time series archive (Dau et al., 2018), we also found that K- 
medoids with DTW achieved the highest adjusted Rand index across the 
greatest number of datasets. All of the event time series data in UCR 
archive were pre-processed as outlined in Section 3.1 to avoid unex-
pected consequences that might result from treating benchmark data 
differently from our hydrological event dataset. 

3.3.1. K-medoids Clustering Algorithm 
K-medoids is a variant of the popular K-means (Wu et al., 2007), in 

which the cluster centroids are observation points (called “medoids”) as 
opposed to coordinates as in K-means. These medoids are mapped from a 
multivariate time series of length n (i.e., t1, t2, …, tn) to vectors of the 
multiple variables (i.e., V1,V2,…,Vm) at each time step ti. Like K-means, 
the K-medoids algorithm is iterative (Supporting Information Algorithm 
S1) where the initial K medoids are selected randomly. The algorithm 
has two phases: Phase 1 assigns observation points to clusters (Line 3); 
and Phase 2 calculates new medoids for each cluster (Line 4). In Phase 1, 
the distance between all observation points and each of the medoids is 
calculated, and each observation point is assigned to the closest medoid. 
In Phase 2, a new medoid is selected from each cluster by finding the 
observation point that minimizes the sum of squared distances (i.e., sum 
of squared errors) to all other observation points in that cluster. These 
two phases are repeated for a given number of iterations or until there is 
no change in the medoid selection. Algorithm S1 in Supporting Infor-
mation was implemented in Python (version 3.6.1); the source codes 
may be found at GitHub (Javed, 2019b). 

For a given dataset, the optimal number of clusters may vary 
depending on the research question/objective. In this study, the elbow 
method guided the selection of the “optimal” number of clusters. This 
method consists of plotting the sum of squared errors (SSEs) against an 
increasing number of K clusters. An optimal value for K is selected 

(visually) as the value for which further increases in K result in dimin-
ishing reduction in SSE, thus creating the onset of the plateau. 

3.3.2. Dynamic time warping 
The K-medoids clustering algorithm used a variant of dynamic time 

warping (DTW) to calculate the distance between two multivariate times 
series. Originally introduced for speech recognition (Sakoe and Chiba, 
1978), DTW is arguably the most popular distance measure for time 
series clustering, and is particularly appealing for sensor data generated 
during hydrological events because of (i) the challenges associated with 
defining the beginning and end of an event (i.e., the ambiguity inherent 
in event delineation), and (ii) the noise present in the sensor data (e.g., 
variability in readings due to sensor interference from debris, mainte-
nance activities, and temporary fouling.). 

Fig. 4a and b illustrate how distance between two time series (T1 in 
red and T2 in blue) is calculated using the more common Euclidean 
distance compared with DTW. While Euclidean distance uses a one-to- 
one alignment, DTW employs a one-to-many alignment that enables a 
warping of the time dimension to minimize the distance between the 
two time series. As such, DTW can optimize alignment, both global 
alignment (by shifting the entire time series left or right) and local 
alignment (by stretching or squeezing parts of time series). Paparrizos 
and Gravano (2016) showed that the best accuracy (as measured by the 
Rand index) is obtained when DTW is constrained to a limited window 
size. Multiple window size constraints ranging from 0% to 100% were 
tested to cluster our Mad River dataset. Based on a preliminary quali-
tative analysis of event visualizations, a window size constraint of 10% 
was selected for our analysis. Constraining the window size to 10% of 
the observation data is usually considered adequate for real applications 
(Ratanamahatana and Keogh, 2004); and it accommodates minor dif-
ferences in timing between similar hydrological events, as is often the 
case when delineating the end of an event proves challenging. 

Aligning two time series, T1 of length a and T2 of length b, using 
DTW involves creating an a × b matrix, D, where the element D[i, j] is the 
square of the Euclidean distance, d(t1i, t2j)

2
, d(⋅, ⋅) is the Euclidean dis-

tance, t1i is the ith point of T1, and t2j is the jth point of T2. A warping 
path P is defined as the sequence of matrix elements that are mapped 
between T1 and T2 (see Fig. 4c and d). This warping path must satisfy 

Fig. 4. The top row illustrates the alignment be-
tween two times series for calculating distance in (a) 
Euclidean (one-to-one) and (b) dynamic time warp-
ing (one-to-many); Bottom row illustrates an optimal 
(c) alignment of each point in time series T1 and time 
series T2 (shown with black lines) and (d) warping 
path, i.e., optimal alignment of time series T1 (red) 
and T2 (blue), where each matrix cell (i, j) is the 
distance between ith element of T1 and jth element of 
T2; the DTW distance is the sum of the distances 
along the optimal path shown in orange.   
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the following three conditions:  

1. Every point from T1 must be aligned with one or more points from 
T2, and vice versa.  

2. The first and last points of T1 and T2 must align, meaning the 
warping path must start and finish at diagonally opposite corner cells 
of the optimal warping matrix.  

3. No cross-alignment is allowed, that is, the path must increase 
monotonically within the matrix. 

For all paths that satisfy the three conditions above, DTW finds a path 
that minimizes the distance calculated as in Eq. 1 (Shokoohi-Yekta and 
Keogh, 2015): 

DTW(T1, T2) = min
P

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

(i,j)∈P

D[i, j]
√

, (1) 

Algorithm S2 in Supporting Information outlines the procedure for 
calculating this minimum distance using dynamic programming method 
(Bellman, 1957). 

The environmental sensor data in this proof-of-concept are bivariate, 
representing water quality concentration and stream discharge time 
series. There are two DTW variants – DTW-independent (DTW-I) and 
DTW-dependent (DTW-D). In DTW-I, the distance between T1 and T2 is 
the sum of distances calculated separately for each variable (by invoking 
the DTW algorithm for each variable). Whereas in DTW-D, T1 and T2 are 
handled as multivariate time series; and the DTW algorithm is invoked 
only once. Because of the strong dependency between discharge and 
concentration in this work, DTW-D is used. The source code, imple-
mented in Python (version 3.6.1), may be found at GitHub (Javed, 
2019a). 

3.4. Generating synthetic hydrograph and concentration-graph data 

Synthetic multivariate times series “event data” were generated 
using eight conceptual hydrographs and two conceptual concentration 
graphs (Fig. 5), and then combined to produce a set of heterogenous, 
albeit simplified, hydrographs and sedigraphs (concentration graphs). A 
stochastic generator was designed to produce synthetic data with sensor 
noise. Random samples were drawn from a normal (Gaussian) distri-
bution with a mean of 0.00 and standard deviation of 0.05 and added to 
the discharge and concentration values at each time step in order to 
simulate sensor noise. When combining each of the eight synthetic 
hydrograps with the two concentration-graphs, sixteen synthetic storm 
event types can be produced. These combined event types can be labeled 
and used as “ground truth” events to help assess and validate the 
methodology. 

Five control parameters, ranging from 0 to 1, were used to generate 
the synthetic graphs: time-to-peak, duration-of-peak, delay, recess, and 
initial baseline conditions. Time-to-peak controls the timing for the 
concentration/discharge values to reach the peak (normalized value of 
1); duration-of-peak controls the duration of flow above baseline con-
ditions; delay controls the time at which the value (either discharge or 
concentration) begins to rise in magnitude above the baseline condi-
tions; recess controls the degree to which event concentration/discharge 
values return to the baseline conditions; and initial baseline controls the 
minimum value of the flow over an event. Parameter values for gener-
ating each type of synthetic graph (hydrograph and concentration- 
graph) were determined qualitatively based on re-production of 
simplified yet realistic approximation of typical hydrographs and sedi-
graphs observed in our study watershed (Supporting Information 
Table S2). 

3.5. Measures for assessing clustering performance 

We used the Hopkins Statistic to measure the clustering tendency of 

our three datasets (i.e., the synthetic dataset, the Mad River dataset and 
the expanded regional Vermont dataset). The statistic value ranges from 
0 to 1, where 1 indicates a high tendency to cluster and 0 indicates 
uniformly distributed data (Banerjee and Dave, 2004). Additionally, 
transformed variables (those representing the 24 storm event metrics of 
Table 2) were examined post-clustering to see whether these event 
metrics had 1) any association with clusters or 2) statistical power to 
differentiate between clusters using One-way Analysis of Variance 
(ANOVA) followed by Tukey Honest Significant Differences (HSD) tests 
between individual group means. For those variables (or their trans-
formations) that were not normally distributed, nonparametric methods 
were applied (Kruskal–Wallis). Lastly, Z-score values were calculated for 
each of the 24 storm event metrics of Table 2 to identify feature 
importance associated with cluster differences. The Z-score represents 
the distance of an individual storm metric from the population mean 
(measured in terms of standard-deviation). 

4. Results 

4.1. Using synthetic data to validate methodologies 

To help validate the METS clustering approach, we generated 800 
synthetic storm events, equally distributed among the sixteen possible 
combinations (see Section 3.4). As one might expect, the synthetic data 
had a high clustering tendency (Hopkins statistic of 1.00); and the 
optimal number of clusters, determined using elbow method as K = 16 
(see Fig. 6a), matched the intended synthetic design (16 event types). 
Examples of synthetic events from each of the 16 event classes are shown 
in Fig. 7. Despite the presence of stochastically generated noise, the 
synthetic dataset clustered with 100% accuracy using K-medoids with 
DTW (i.e., clusters were identical to the ground truth). 

Fig. 5. Example synthetic hydrographs and concentration graphs generated 
from eight conceptual hydrograph types: (a) flashy, early peak – return to 
baseline flow, (b) early peak – slow return to baseline flow, (c) mid-peak – 
return to baseline flow, (d) delayed rise to peak – return to baseline flow, (e) 
flashy, early peak – incomplete return to baseline flow, (f) early peak – slower 
incomplete return to baseline flow, (g) mid-peak – incomplete return to baseline 
flow, and (h) delayed rise to peak – incomplete return to baseline flow, and two 
conceptual concentration graphs: (i) early peak and (j) late peak. 
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4.2. Application of METS to the Mad River Dataset 

In applying the METS clustering to the 603 Mad River storm events, 
we identified K = 4 event clusters with distinct SSC and Q responses (see 
the plateau in the elbow plot of Fig. 6b). Approximately one third of the 
events (n = 234) fell into cluster 1, with each of the three remaining 
clusters having between 116 and 128 events (see Fig. 8). Unlike the 
synthetic dataset, the optimal number of clusters for the Mad River 
dataset, any real dataset for that matter, will never be known with any 
degree of certainty. However, these data have a Hopkins test statistic of 
0.96 indicating they are highly clusterable. We first explored whether a 
relationship existed between the four METS clusters and the six-class 
hysteresis scheme presented in Section 3.2. We found little association 
between the two as the confusion matrix and cluster distribution of 
Fig. 8 show the six classes to be fairly evenly distributed across the four 
METS clusters. 

4.2.1. Qualitative interpretation of METS clusters using event visualizations 
Finding little relationship between the METS clustering and the 

hysteresis classification, we further investigated the characteristics 
associated with combined hydrograph and sedigraph trajectories of the 
METS clusters using multiple visualization approaches. To visualize 
overall trends, we superimposed 20 storm events closest to the centroid 
of each of the four METS clusters onto single plots (Fig. 9); mean values 
are plotted as solid lines. Additionally, examples of the event times se-
ries, C-Q hysteresis plots, and 3-dimensional C-Q-T plots for each cluster 
are provided in Fig. 10. In general, the METS cluster 1 events (Figs. 9a 
and 10a) have broad clockwise hysteresis patterns with an early, and 
relatively brief duration of high SSC. The hydrographs are flashy, rise 
quickly and return nearly to baseline flows. Cluster 2 events typically 
have a more narrow hysteresis loop compared to cluster 1 and broad 
(less flashy) sedigraphs and hydrographs with streamflows that do not 
fully return to the baseline levels (Figs. 9a and 10b). Cluster 3 events are 
similar to cluster 2, but exhibit flashier and sometimes multi-peaked 
sedigraphs that are shorter in duration (Figs. 9c and 10c). Multi- 

Fig. 6. Sum of squared errors (SSE) for different number of clusters from (a) the 
synthetic storm event dataset (elbow point at K = 16) and (b) the Mad River 
storm event dataset (elbow point at K = 4). 

Fig. 7. Example events in each of the 16 event classes in the synthetic dataset..  

Fig. 8. Distribution of hysteresis loop classes over METS clusters.  
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peaked events sometimes exhibit compound behavior including, for 
example, portions of clockwise hysteresis loops and no hysteretic 
behavior (linear relationships). Cluster 4 events typically have a delay in 
the rise of the hydrograph and sedigraph, and typically more aligned 
hydrograph and sedigraph peaks (Figs. 9d and 10d). In contrast to 
cluster 2 and 3 events, the hydrographs of cluster 4 also tend to return to 
near baseline levels. 

4.2.2. Statistical analysis of METS clusters 
Of the 24 storm event metrics in Table 2, 19 metrics had significantly 

different mean values for at least one of the METS clusters. The reader 
should bear in mind that these event metrics were not used as input to 
either the METS clustering algorithm or the hysteresis classification 
scheme. Both the METS clusters and hysteresis classes have event met-
rics with good discriminatory power; but there was little overlap for a 
given metric. For instance, two of the metrics shaded in Table 3 (e.g., 
SSCPeak and the difference in discharge values at the beginning and end 
of an event (QRecess)) show an ability to discriminate between the clusters 
generated by METS, but little statistical power to discriminate between 
the six classes of the hysteresis classification method. In contrast, both 
the hysteresis index (HI) and time between peak SSC and peak flow 
(TQSSC) show power to discriminate between the hysteresis classes, but 
not the MET clusters (Table 3). Similar differences in discriminatory 
power were observed in metrics related to antecedent conditions, rain-
fall characteristics, and streamflow/sediment characteristics (Support-
ing Information Tables S3–S5). 

Next, we explored the hydrometeorotological factors associated with 
the four METS clusters using event metric Z-score values. Again, these 
event metrics were not used as input to the clustering algorithm, but as a 
means to study linkages between these characteristics and the resulting 
clusters. The storm events of cluster 1 have greater amounts of precip-
itation (positive Z-score for P and PMax) and wetter antecedent condi-
tions exhibited by higher mean BFNorm, SMDeep, SMShallow, A3P and 
A14P. In general, these factors are associated with higher stream 
discharge as confirmed by the positive Z-score for Log (QNorm), QNorm, 
and FI (flood intensity) as well as higher peak SSC values. Other notable 
characteristics include hydrographs that return to baseline flow (nega-
tive Z-score for QRecess), and a rapid rise in the sedigraph and hydrograph 
(negative Z-score for TSSC and TQ) and positive Z-score for HI, which 
translate to a 2D hysteresis that is dominated by a broad clockwise 
pattern (observed in Figs. 9a and 10a). 

Cluster 2 is associated with smaller precipitation events (negative Z- 
score for P and PMax) and drier antecedent conditions (negative BFNorm,

SMDeep, A3P and A14P Z-scores), both resulting in lower stream 
discharge (negative Log (QNorm), QNorm, and FI Z-scores). These events 
also have positive QRecess and SSCRecess Z-score values. These two metrics 
were designed to capture whether streamflow and SSC return to baseline 
levels; positive scores are associated with events that do not return to 
base levels (Figs. 9b and 10b). Additional characteristics include lower 
peak SSC concentrations and negative Z-scores for BL (indicative of 
watersheds that respond more slowly to a rainfall event), and a longer 
duration between the peak SSC and center of mass for rainfall (positive 
Z-score for TPSSC). The latter translates to hysteresis patterns with more 
narrow loop, which is confirmed visually (Figs. 9b and 10b), and by the 
negative Z-score for hysteresis index. 

Cluster 3 events have a rapid rise in both streamflow and SSC 
(Figs. 9c and 10c) and are associated with a positive Z-scores for QRecess 
and negative for SSCRecess, which is indicative of sedigraphs that return to 
base levels and hydrographs that do not. The sedigraph is also often 
characterized by multiple peaks; and in general, there is a short duration 
between the peak SSC and the center of mass for rainfall (negative Z- 
score for TPSSC) as well as between the peak SSC and peak discharge 
(negative TQSSC). In addition, these events have lower precipitation 
(negative Z-scores for P and PMax) and stream discharge (negative Log 
(QNorm),QNorm, and FI), as well as Z-scores that approach zero for BFNorm,

SMDeep, SMShallow, A3P and A14P, which indicate average antecedent 
conditions. 

Lastly, cluster 4 events are associated with higher precipitation 
(positive Z-score for P) that are longer in duration (positive Z-score for 
DP); however, these events have less intense rainfall (near zero Z-score 
for PMax), and are associated with average to fairly dry antecedent 
conditions (i.e., slightly negative Z-score values for BFNorm, SMDeep,

SMShallow, A3P and A14P), all of which results in near average stream-
flows (near zero Z-score for Log (QNorm), QNorm, and FI). Other event 
characteristics include a long time to peak SSC and Q (positive Z-score 
for TSSC and TQ) and larger amounts of sediment transport during events 
(positive SSLNorm). 

4.3. Effects of additional watersheds on METS clustering 

The number and type of event clusters/classes are dependent on 
geographic range of study. In re-running the METS analysis on the 

Fig. 9. Mad River storm events closest to the centroid of each of the K = 4 clusters, superimposed on a single graph with the mean value plotted as a solid line — (a) 
cluster 1 events have a broad clockwise hysteresis pattern featuring an early and relatively brief duration of high SSC, (b) cluster 2 events have a narrow clockwise 
hysteresis loop and broad sedigraphs and hydrographs with streamflows that do not fully return to baseline levels, (c) cluster 3 events have flashier and sometimes 
multi-peaked sedigraphs that are shorter in duration, and (d) cluster 4 have a delayed rise of hydrograph and sedigraph, and typically more aligned hydrograph and 
sedigraph peaks. 
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expanded regional Vermont dataset, the number of clusters increased 
from K = 4 to K = 9 (Supporting Information Fig. S2). This is not sur-
prising given the differences, particularly in topography and land use, 
associated with the added watersheds. Hungerford Brook, for instance, 
is a low gradient agricultural basin, while Allen Brook drains a highly 
developed suburban area (Supporting Information Table S1). The METS 
results show the expanded dataset cluster 5 to have a substantially large 
number (54%) of counter-clockwise hysteresis loops, which correspond 

to events where the sedigraph peaks after the hydrograph (hysteresis 
Class III), and no events that are clockwise (hysteresis Class II or Class 
IV) (Fig. 12 and Supporting Information Table S6). 

5. Discussion 

We present a new clustering approach within the broader discipline 
of event-based studies – one that leverages the temporal information in 

Fig. 10. Six storm events closest to the centroid of the four Mad River dataset METS clusters (K = 4, N = 603) — (a) cluster 1 events have a broad clockwise 
hysteresis pattern featuring an early and relatively brief duration of high SSC, (b) cluster 2 events have a narrow clockwise hysteresis loop and broad sedigraphs and 
hydrographs with streamflows that do not fully return to baseline levels, (c) cluster 3 events have flashier and sometimes multi-peaked sedigraphs that are shorter in 
duration, and (d) cluster 4 have a delayed rise of hydrograph and sedigraph, and typically more aligned hydrograph and sedigraph peaks. 
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two or more time series for the purpose of grouping or identifying 
similar events – in this manuscript, a hydrological event comprising 
hydrograph and sedigraph data modeled as three-dimensional C-Q-T 
trajectories. This contrasts with current hydrological event approaches 
that either collapse the time dimension (e.g., 2D hysteresis pattern 
analysis of Lloyd et al. (2016b)) or focus on the response of a single 
variable such as the DTW clustering approach of Dupas et al., 2015; the 
latter re-scales events using a single (ideal) hydrograph and then clusters 
the concentration response. While these approaches are important to a 
variety of research applications, these 2-D hysteresis methodologies lose 
the temporal information, while the latter requires a rescaling of the C-Q 
variables. The multivariate version of DTW-D used in the METS clus-
tering of this manuscript is designed to extract relationships between the 
time series of two or more variables, resulting in a dataset partitioning 
that is dissimilar and complementary to existing hysteresis methods. 

5.1. Effects of regional scale on METS clustering 

Our motivations for limiting the primary analysis to the Mad River 
watershed were twofold. First, meteorological data were not available 
for the additional watersheds; and secondly, we wanted, at least 
initially, to control for certain watershed characteristics such as topog-
raphy and land use (e.g., the Mad River has primarily two land use types 
– forest and agriculture). In this single watershed study, we identified 
four predominant clusters for hydrological events occurring between the 
period from 2013 and 2016, with one cluster type occurring most 
frequently (38%), and 64% of the events categorized as clockwise pat-
terns. This relatively small number of event types (i.e., four clusters) 
might be expected, given the uniformity of watershed characteristics 
across the six Mad River monitoring sites; as this is similar in number to 
other event analyses from single study areas. Bende-Michl et al. (2013) 
identified 3–4 clusters in a study on nutrient dynamics; Mather and 
Johnson (2015) identified 5–7 clusters when analyzing C-Q loops; and 3 
nutrient-event response types were identified in the work of Dupas et al. 
(2015). In general, there is a great deal of interest and merit in tracking 
the change in both the number and type of event responses within a 
single study area, particularly for example, when monitoring in-stream 
changes prior to and after restoration efforts. However, other moni-
toring applications may require tracking changes across watersheds at 
larger geographical scale; and one might expect the number of clusters 
(event types) to increase with the geographic range of study as 
demonstrated in Section 4.3. 

Regardless of regional scale, we found the METS clustering to be 
heavily influenced by the degree to which both of the time series (SSC 
and Q) return (or not) to base levels at the end of the event. This was 
evidenced both visually (Fig. 10) and by the significance of the SSCRecess 
and QRecess metrics (Table 3 and Fig. 11). From a hydrological perspec-
tive, the rate and degree of recession (return to baseline flow and 

background concentration levels) are important indicators of soil 
moisture, groundwater elevations, and the resulting hydrological flow-
paths. Classification schemes based on the shape and direction of hys-
teresis do not necessarily capture this “return to baseline conditions” 
behavior because the overall C-Q patterns are primarily driven by the 
middle portion of the hydrograph-sedigraph (i.e. largest offset between 
C-Q) rather than differences between the times series at the start or end 
of the event. The ability of the METS clustering to capture this return-to- 
baseline conditions phenomena, in addition to other metrics, holds 
promise for many applications (e.g., model validation) used in fore-
casting floods, water quality monitoring, watershed similarity studies, 
and detecting change in watershed functions. 

5.2. Leveraging methodological strengths to group events 

The post-cluster analysis performed on event metrics (hydrological 
and meteorological metrics in Table 2) was an attempt to explore which 
factors (i.e., characteristics associated with the event time series) might 
be driving the METS clustering, bearing in mind that these metrics were 
not used as inputs to the clustering analysis itself. Prior event-based 
hydro-meteorological studies have successfully used this type of post- 
statistical analysis to tease out factors important in discriminating be-
tween (or correlated with) event groupings. Examples include the clas-
sifying of event hysteresis patterns to study erosional processes (Seeger 
et al., 2004; Nadal-Romero et al., 2008; Sherriff et al., 2016; Hamshaw 
et al., 2018). 

Here, we highlight some key results from our post-cluster statistical 
analysis, particularly the event metric with statistically significant dif-
ferences across the METS clustering and/or hysteresis classification. 
First, while the event hysteresis index (HI) was identified, not surpris-
ingly, as important for differentiating between the hysteresis class types 
(see Table 3 in Supporting Information), the temporal hydrograph and 
sedigraph metrics (e.g., time to peaks – TQ, and TSSC), as well as the 
degree to which both time series return to baseline conditions (QRecess 
and SSCRecess) were not identified as important drivers. In contrast, these 
four metrics as well as the Peak SSC (SSCPeak), duration of stormflow 
(DQ) and antecedent precipitation metrics (Section 4.2.2) were identi-
fied as important for differentiating between the METS-based clusters 
(Table 3 and Supporting Information Table S3). 

5.3. Using methods in tandem to leverage strengths 

Each of the clustering and classification approaches have unique 
strengths and weaknesses; and the post-statistical analyses (e.g., Tukey 
HSD test and Z-scores of Section 4.2.2) provide some guidance on 
method selection that best aligns with manager or stakeholder goals. 
However, using more than one method in tandem may help to leverage 
methodological strengths. For example, in event-based suspended 

Table 3 
Result of post hoc Tukey HSD test (α = 0.05) for all pairwise comparisons of hydrograph/sedigraph related storm event metrics. Within each metric, if two classes/ 
clusters do not share the same letter, the metric means are significantly different. Shaded columns are highlighted to show examples of metrics distinguished well by 
METS, but not by hysteresis classes (light shading) and metrics discriminated well by hysteresis classes (dark shading).  
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sediment studies – those aimed at identifying the proximity of riverine 
erosion sources, a two-phased approach may add value. Let’s consider 
our expanded dataset in which more than two thirds of the events have 

clockwise hysteresis patterns. A first phase might use hysteresis classi-
fication to prioritize the clockwise versus counter-clockwise nature of 
the hysteresis patterns, as the direction embeds key process information. 

Fig. 11. Typical hydrometeorological characteristics of METS clusters as represented by storm event Z-score metrics for each of the four clusters.  

Fig. 12. Storm events closest to the centroid of the cluster 5 dominated by counter clockwise hysteresis type events (when K = 9) in the expanded regional Vermont 
dataset, discovered by including more watersheds: (a) all 56 events in cluster 5 superimposed, with the mean plotted as a solid line, (b) distribution of cluster by 
hysteresis loop classification, and (c) six events closest to the centroid of the cluster (n = 56). 
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This Phase I classification could then be further partitioned into sub-
groups (via METS methodology) to help refine the understanding of 
watershed processes. 

To highlight the potential of such an approach, we applied the 2-D 
hysteresis analysis and METS clustering in tandem using the expanded 
dataset of Section 4.3. In Phase I, hydrological events were classified (e. 
g., into clockwise and counter-clockwise groups) based on their hys-
teresis patterns; and in Phase II, the METS clustering was applied to each 
of the Phase I classes, respectively (Fig. 13 and Supporting Information 
Figs. S3 and S4). Clockwise hysteresis patterns are typically indicative of 
erosion sources (e.g., gullies or rills) that are located very close to the 
monitoring site. Whereas the events in the counter-clockwise group are 
characterized by hydrographs that occur (and peak) prior to the 
accompanying sedigraphs. These are often indicative of more distal 
sediment sources (e.g., upstream streambank collapse). The METS sub- 
clusters shown in the lower half of Fig. 13 (sub-clusters B), were 
differentiated by temporal information that was not fully captured by 
the Phase I hysteresis classification. Both sub-clusters are characterized 
by hydrographs and sedigraphs that return more completely (relative to 
sub-clusters A) to baseline levels. Whether used on its own or on a 
dataset that has been pre-classified or grouped by some other means, 
METS offers hydrological researchers a flexible and powerful approach 
for data-driven analysis of high-frequency water quality data; and the 

methodology may be easily adapted to different analysis objectives. 

5.4. Challenges and opportunities 

The sparsity of hydrological events is an inherent data challenge that 
relies on data-driven or machine learning methods of analysis. Our study 
area, a typical humid and temperate watershed, experiences on average 
about 30 rainfall-runoff (i.e., storm) events a year. Other recent, 
prominent event-based studies (Wymore et al., 2019; Sherriff et al., 
2016; Vaughan et al., 2017) are similarly constrained by event sizes 
ranging between 8 and 90 events per monitoring site. Albeit large from 
an environmental monitoring perspective, these relatively small sample 
sizes cause significant challenges for machine learning methods. The 
challenges are compounded when analyzing multivariate time series 
generated from in situ sensors that must be kept online during extreme 
events and operating simultaneously. Currently, the hydrological 
informatics community is investing significantly in the integration and 
maintenance of data hubs that comprise multiple researchers across 
multiple organizations such as those of the Consortium of Universities 
for the Advancement of Hydrological Sciences, Inc. (CUAHSI, 2019). 
Despite the development of new machine learning methods to address 
data sparsity issues, another promising approach is to generate synthetic 
hydrological storm events as demonstrated in this work. 

Fig. 13. Application of METS after pre-classifying events based on hysteresis directions of (a) clockwise hysteresis and (b) counter clockwise hysteresis that can 
correspond to general proximity and timing of erosion source activation. METS clustering further partitions these hysteresis classes into sub-clusters (visualized as 
two example events) distinguishable by different hydrograph and sedigraph characteristics. Photos from observed, active erosion sources within the Mad 
River watershed. 
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METS clustering operates on delineated events and is influenced by 
the degree to which both time series (SSC and Q) return (or not) to base 
levels at the end of the event. This highlights the importance of precise 
event delineation in METS clustering. In hydrology, many event-based 
studies rely on semi-automated and somewhat subjective methods to 
identify the start and end of an event, particularly when handling multi- 
peak (or consecutive) events (Wymore et al., 2019; Vaughan et al., 2017; 
Hamshaw et al., 2018; Sherriff et al., 2016; Gellis, 2013). Automation of 
event delineation is another area that can benefit from advances in 
machine learning methods, new data hubs, and access to synthetic, pre- 
delineated event data. 

A key challenge with any clustering method is determining the 
optimal number, K, of categories (e.g., the correct number of storm 
event types). In this work, we select K based on the inflection point of an 
elbow plot. However, identifying the inflection point is often subjective. 
This is further complicated in hydrogeological applications, where the 
optimal number of categories is dependent on both the research objec-
tives as well as the geographic location. In this proof-of-concept, we 
made no assumptions or preconceptions about the desired number of 
outcome categories. However, domain experts familiar with a particular 
region of study may have intuitive knowledge regarding the desired 
number of outcomes. Varying the number of clusters in METS is rela-
tively straightforward and not computationally intensive; thus, re-
searchers can easily evaluate the effect of cluster number – particularly 
when methods for evaluating “optimal” (e.g., the elbow method) are not 
definitive. Alternatively, one could replace the METS clustering algo-
rithm with an alternative algorithm such as the density-based clustering 
algorithm of Ester et al. (1996), which does not require the number of 
clusters as an input. 

The METS clustering approach is applicable to any water quality 
constituent or solute (e.g., nitrate, phosphorous and conductivity), 
which would be expected to demonstrate very different C-Q-T trajec-
tories and resulting clusters compared to suspended sediment concen-
tration response (Lloyd et al., 2016a; Zuecco et al., 2016). Additionally, 
the approach may be extended beyond a single parameter (e.g., SSC) to 
multiple parameters (e.g., SSC and nitrate) to explore/reveal any un-
known interactions during storm events. Expansion to multiple param-
eters will bring interesting visualization and analysis challenges. One 
approach may be to visualize events as 3-D signal trajectories such as 
those we presented in this work. 

6. Conclusion 

The rapidly increasing volume and availability of high-frequency 
time series data offer considerable opportunity to analyze watershed 
systems at the storm event scale. In this work, we introduce the multi-
variate event time series (METS) approach for categorizing hydrological 
storm events into a limited number of clusters given data from multiple 
sensors deployed in the Mad River watershed in Vermont, USA. In order 
to validate the approach, we showed that stochastic generation of syn-
thetic hydrographs and concentration graphs provided a simple and 
effective solution to over-coming the data sparsity challenge in training 
machine learning algorithms on environmental data. The approach is 
flexible enough to be used with any water quality constituents (e.g., 
nitrate, phosphorous and conductivity) alone or in combination. We 
highlight areas for further research to expand the application of event- 
based analysis. Additionally, we discuss how the METS clustering can 
be used in tandem with a traditional hysteresis based event classification 
scheme. Whether used on its own or in tandem with other partitioning 
methods, this method offers hydrological researchers a flexible and 
powerful approach for analyzing high-frequency water quality data; and 
opens up new possibilities for interpreting emergent event behavior in 
watersheds. 
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