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Abstract

This paper presents an automated machine learning framework designed
to assist hydrologists in detecting anomalies in time series data generated
by sensors in a research watershed in the northeastern United States critical
zone. The framework specifically focuses on identifying peak-pattern anoma-
lies, which may arise from sensor malfunctions or natural phenomena. How-
ever, the use of classification methods for anomaly detection poses challenges,
such as the requirement for labeled data as ground truth and the selection
of the most suitable deep learning model for the given task and dataset. To
address these challenges, our framework generates labeled datasets by inject-
ing synthetic peak patterns into synthetically generated time series data and
incorporates an automated hyperparameter optimization mechanism. This
mechanism generates an optimized model instance with the best architectural
and training parameters from a pool of five selected models, namely Tem-
poral Convolutional Network (TCN), InceptionTime, MiniRocket, Residual
Networks (ResNet), and Long Short-Term Memory (LSTM). The selection
is based on the user’s preferences regarding anomaly detection accuracy and

⋆This document is the results of the research project funded by the National Science
Foundation.

∗Corresponding author

Preprint submitted to Machine Learning with Applications December 7, 2023

ar
X

iv
:2

30
9.

07
99

2v
2 

 [
cs

.L
G

] 
 5

 D
ec

 2
02

3



computational cost. The framework employs Time-series Generative Adver-
sarial Networks (TimeGAN) as the synthetic dataset generator. The gen-
erated model instances are evaluated using a combination of accuracy and
computational cost metrics, including training time and memory, during the
anomaly detection process. Performance evaluation of the framework was
conducted using a dataset from a watershed, demonstrating consistent selec-
tion of the most fitting model instance that satisfies the user’s preferences.

Keywords:
automated machine learning, anomaly detection, time series data,
watershed, sensor-generated data, hyperparameter optimization, deep
learning models

1. Introduction

In-stream environmental sensors are now commonly deployed in various
watersheds across the United States to monitor water quality. However,
a common limitation in these studies is the delay between data acquisi-
tion and analysis, mostly due to the inability of many domain scientists to
rapidly identify anomalies and clean large datasets efficiently. In this study,
conducted as part of the NSF-funded Critical Zone Collaborative Network
(CZCN) project, we present a case study of ecosystem data collected from
sensors deployed at a watershed in Vermont, which serves as a testbed for our
research. These sensors measure a variety of in-stream parameters, such as
fluorescent dissolved organic matter (FDOM), turbidity, water level (to com-
pute streamflow), and water temperature. The raw data from these sensors
are messy and contain various anomalies. One particularly problematic type
of anomaly in the project study is peak-pattern anomaly observable in a se-
quence of consecutive point measurements (i.e., time series samples), caused
by a range of hydrological and non-hydrological events. After a year of re-
view, domain scientists have identified and named these patterns. However,
to analyze the data efficiently, cleaning is necessary either by removing or
correcting those anomalies that are detected.

Anomaly detection in watershed time series data (WTSD) is crucial for
effectively monitoring and managing water systems and resources. Anomaly
detection in this context refers to identifying deviations from the standard,
normal, or expected behavior in WTSD. These anomalies can provide valu-
able information about important events or may mislead the decision pro-
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cess. Detecting anomalies in WTSD is challenging due to the unpredictable
nature of natural systems. Current methods typically focus on identifying
single anomalous data points, known as point anomalies, without consider-
ing anomalies that span multiple points, known as pattern anomalies. These
latter anomalies require the assessment of previous data points in relation to
current data points, making their detection more complex. Therefore, there
is a need for a reliable peak-pattern anomaly detection framework that can
specifically detect and remove these repeating anomalous patterns.

Several use cases in the field of hydrology require accurate and efficient
detection of pattern anomalies. For example, detecting and repairing anoma-
lous peaks in dissolved organic carbon (DOC) data is necessary for accurate
analysis of the concentration-discharge (C-Q) relation for DOC (Evans and
Davies (1998), Hamshaw et al. (2019),Vaughan et al. (2017)). Additionally,
detecting unusual patterns in streamflow data, such as flat lines or unmatched
peaks, can aid in model calibration and better flood forecasting. Pattern
anomaly detection in WTSD is also helpful in identifying sensor malfunc-
tions and understanding the impact of seasonal and precipitation variations
on hysteresis in C-Q relations.

Current trends for automating anomaly detection in WTSD use ma-
chine learning (ML) methods. However, determining the appropriate ML
model can be challenging due to a large number of potential models avail-
able and the varying data characteristics of different watersheds. In order
to address these issues, we propose the development of an end-to-end auto-
mated machine learning (autoML) pipeline called Hands-Free Peak Pattern
Anomaly Detection (HF-PPAD). HF-PPAD aims to provide an automated
and efficient solution for detecting pattern anomalies in WTSD, making it
accessible and convenient for domain scientists. It needs thorough under-
standing of anomaly detection algorithms for users to choose the right one,
which often requires a strong background in generative models and statisti-
cal assumptions. Properly setting the parameters for these algorithms often
requires detailed understanding of their inner workings. Most domain sci-
entists (often hydrologists and biogeochemists in this case) are lacking such
background, and HF-PPAD is stepping in to help. HF-PPAD utilizes su-
pervised deep learning models to deliver more accurate anomaly detection
performance compared with other unsupervised or semi-supervised methods.
In this work, we chose InceptionTime, MiniRocket, ResNet, TCN, and LSTM
as our supervised deep learning models due to their exceptional results in var-
ious machine-learning tasks (Fawaz et al. (2019)). MiniRocket is a recently
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developed model that can extract features from time series data with high
efficiency, making it suitable for large-scale datasets (Dempster et al. (2021)).
ResNet is a widely recognized model known for its accuracy and has been
adapted for time series data analysis (Jing et al. (2021)). InceptionTime, on
the other hand, is specifically designed for analyzing time series data (Fawaz
et al. (2019)), and TCN has been shown to perform well in time series clas-
sification tasks and is lightweight, making it ideal for resource-constrained
environments (Pelletier et al. (2019)). Additionally, our choice of LSTM was
based on its proven effectiveness in a wide range of time series applications
(Hochreiter and Schmidhuber (1997 )). These models can be configured in a
variety of ways, with ResNet, InceptionTime, and LSTM being more power-
ful, while MiniRocket and TCN are more lightweight options.

The HF-PPAD performs several tasks, including the generation of a syn-
thetic labeled peak pattern anomaly dataset for WTSD, automating the gen-
eration of an optimal instance of each model in the given pool through hy-
perparameter optimization, and choosing the best model instance based on
the user’s relative preference between high accuracy and lightweight model.
HF-PPAD employs a state-of-the-art time series data synthesis tool like
TimeGAN (Yoon et al. (2019)) to automatically generate a large amount
of time series data containing labeled peak pattern anomalies similar to the
original peak-pattern anomalies; this eliminates the expensive overhead of la-
beling anomalous pattern instances in the original data for supervised learn-
ing. The model instance building and selection process utilizes hyperparam-
eter optimization techniques such as random forest, HyperBand, Bayesian
optimizer and a greedy search technique (Feurer and Hutter (2019), Senagi
(2019)).

To the best of our knowledge, this work is the first to provide an auto-
mated peak pattern anomaly framework that performs comprehensive tasks
ranging from the generation of a fully labeled peak pattern anomaly dataset
needed for supervised training of anomaly detection in the absence of a
ground truth labeled dataset. The method also automates the selection of
the best model instance based on user’s preference on the anomaly detection
accuracy and the computational cost for the watershed time series dataset.
In summary, the main contributions of this work are as follows.

1. An end-to-end automated peak anomalous pattern detection framework
for watershed time series data.

2. The use of TimeGAN to generate labeled synthetic watershed time
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series data and peak pattern anomalies.

3. An automated generation (i.e., design and selection) of the best model
instance (i.e., deep learning classifier) from a pool of models according
to the user’s preference between accuracy and model instance size.

In the remainder of the paper, Section 2 discusses related work, Section 3
discusses the application of HF-PPAD. Section 4 provides an overview of
watershed data and the different peak-pattern anomaly types. Section 5
outlines the AutoML pipeline of the HF-PPAD framework, including its data
preparation and model selection steps. Section 6 presents the results of our
experiments. Finally, Section 7 concludes the paper and discusses avenues
for future research.

2. Related Work

2.1. Peak anomaly detection

Anomaly detection methods can be used to identify different types of
anomalies, including point anomalies, pattern anomalies, and system anoma-
lies (Lai et al. (2021); Chandola et al. (2009)). A point anomaly refers to
a single sample in a time series, whereas a pattern anomaly is identified by
a sequence of samples that exhibit a certain characteristic or behavior (e.g.,
trend, change). A system anomaly refers to a group of sequences (e.g., sets
of time series patterns) in which one or more systems are in an abnormal
state. Most existing work on anomaly detection has focused on identifying
point anomalies (Cho and Fryzlewicz (2015); Enikeeva and Harchaoui (2019);
Fearnhead and Rigaill (2019); Fryzlewicz (2014); Tveten et al. (2022)). Pang
et al. (2021) noted that methods for detecting point anomalies cannot be
applied to “group anomalies” with distinct characteristics. The reference to
group anomalies in our work is also the same as pattern anomalies.

The peak anomaly in our watershed data is a pattern anomaly that is
identified by the shape of the time series sample sequences. There have
been a few efforts to detect pattern anomalies in hydrological watershed
sensor-generated time series data, but these efforts have primarily focused
on detecting deviations from patterns (Yu et al. (2020), Sun et al. (2017)
and Qin and Lou (2019)). The peak anomalies that we are interested in
are different from the pattern anomalies detected by these algorithms. We
have found that there is more relevant work on detecting peak anomalies
in time series data from other domains, such as Electrocardiogram (ECG)
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anomaly detection (Lin et al. (2019), Li and Boulanger (2020)). These ECG
datasets are annotated with codes indicating whether segments are normal
or abnormal at each R peak location.

2.2. Automated machine learning in hydrology

Automated machine learning (AutoML) has emerged as a promising so-
lution for enhancing anomaly detection in hydrology. Despite the application
of machine learning in hydrology for over 70 years (Dramsch (2020)), select-
ing the most suitable model for a given problem remains a challenge. In
recent years, the focus of machine learning in hydrology has shifted toward
model validation, applied statistics, and subject matter expertise.

Automated machine learning (AutoML), a field that automates the pro-
cesses and tasks involved in machine learning problems (Wu et al. (2022),
Yao et al. (2018)), has the potential to enhance anomaly detection methods.
Although still in its early stages, a few proposed methods use AutoML for
anomaly detection (Li et al. (2021), Neutatz et al. (2022)). Most techniques
are designed to solve a specific problem or work with certain data constraints.

Existing AutoML tools such as Auto-WEKA (Kotthoff et al. (2019)) and
Auto-Sklearn (Feurer et al (2015)) lack the more modern automated ap-
proaches for deep learning models. Auro-Keras (Jin et al. (2019)), an open-
source library, optimizes deep neural networks for text and image data only
and is not specifically designed for time series classification tasks. Also, these
tools provide a single optimizer for hyperparameter optimization. Our Au-
toML pipeline extends the optimization framework to include deep learning
model architectures, training hyperparameters, as well as the optimization
strategies (e.g., random forest, Bayesian, Hyperband, and greedy search algo-
rithms) to select the best optimizer for generating optimal model instances.
Furthermore, our framework represents a novel application of AutoML ap-
proaches to deep learning time series classifiers for detecting peak pattern
anomalies in WTSDs. This approach transforms the anomaly detection task
into a supervised classification task.

2.3. Unsupervised/semi-supervised versus supervised anomaly detection

Deep learning models, including supervised, semi-supervised, and unsu-
pervised, have become increasingly popular in a wide range of domains due
to their ability to process complex data and learn patterns (Deng and Yu.
(2021),Khan et al. (2021),Haq et al. (2021),Matar et al. (2021)). However,
when it comes to anomaly detection in time series data, unsupervised or
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semi-supervised learning methods are often preferred, as obtaining anomaly
labels can be challenging or impractical (e.g., Bahri et al. (2022); Schmidl
et al. (2022)). These methods often employ shallow learning techniques like
clustering or deep learning such as LSTM-based regression, autoencoders,
and generative adversarial networks (GANs). The accuracy of anomaly de-
tection may be compromised due to the lack of human input and oversight in
learning what constitutes an anomaly; and unsupervised or semi-supervised
learning generally requires more computational resources (in terms of train-
ing time and memory consumption) than supervised learning (Bahri et al.
(2022)).

AutoML has also been applied in unsupervised tasks, such as cluster-
ing data and predicting clusters for new observations (Koren et al. (2022)),
discovering optimized hyper-parameters of a model (Bahri et al. (2022)), se-
lecting anomaly detection models (Kotlar et al. (2021)), detecting outliers in
time series data (Kancharla and Raghu Kishore (2022), Shende et al. (2022),
Xing et al. (2022), Xiao et al. (2021)), generating labeled data (Chatterjee et
al. (2022)) and finding anomalies in images (Sawaki et al. (2019)). There are
several other existing AutoML anomaly detection frameworks, such as PyOD
(Zhao and Nasrullah (2019)), PyODDS (Li et al. (2020)), MetaAAD (Zha
et al. (2020)), and TODS (Lai et al. (2021)), that are designed to identify
anomalies in data. These frameworks are all unsupervised and primarily tar-
get solving point anomaly or change-point detection problems, rather than
the peak-pattern anomaly detection problem that our framework aims to
address.

There are supervised learning methods developed for point anomaly de-
tection from time series data, such as those in Ryzhikov et al. (2020) and Li
et al. (2017). However, none is designed to detect peak-pattern anomalies.
In addition, a survey by Schmidl et al. (2022) found that existing supervised
methods for anomaly detection from time series data are limited to binary
classification of each time series data point into normal and abnormal. Our
work, in contrast, performs multi-class classification to detect multiple types
of peak-pattern anomaly.

3. Hydrology Applications of the HF-PPAD

Our AutoML peak-pattern anomaly detection framework, HF-PPAD,
aims to address a significant bottleneck in the field of hydrology — efficient
removal of anomalous data from watershed time series data, which is neces-
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sary to analyze and model the data accurately. The HF-PPAD framework
will improve the ability to find and access high-quality data and analysis
codes, enabling scientists and educators to maximize the value of watershed
data and produce transparent and reproducible research outcomes.

One specific application of the HF-PPAD framework is the analysis of
concentration-discharge (C-Q) hysteresis, a phenomenon in which the con-
centration of a solute in a stream follows different trajectories on the rising
and falling limbs of a storm or snowmelt discharge hydrograph. When the
relationship between C and Q is nonlinear, this creates a loop on a plot of
concentration against discharge (as shown in Figure 1) and has long been of
interest to hydrologists and biogeochemists seeking to interpret the size and
direction of the loop over time as an indication of solute source and interac-
tions with the watershed. The widespread deployment of in-stream sensors,
measuring high-frequency chemistry at the same resolution as stream dis-
charge has made it possible to construct finely-resolved hysteresis loops.

Figure 1: Depiction of a C-Q hysteresis loop (source: Evans and Davies (1998)).

The testbed site is a small (41-ha) forested watershed in Vermont. At the
outlet of the catchment, sensors are in place to measure stream water level,
fluorescent dissolved organic matter (FDOM), turbidity, and water tempera-
ture. The water level is used to calculate stream discharge, FDOM is used as
a proxy for dissolved organic carbon, and turbidity is a measure of particles
in the water. FDOM is corrected for turbidity and water temperature fol-
lowing the method described in Downing et al., 2012. As is common at most
sites, FDOM at W-9 generally increases with increasing discharge but with a
delay such that it peaks after the stream discharge and has a long tail. This
creates a counterclockwise hysteresis loop, with higher DOC concentrations
at a given discharge on the falling limb compared with the same discharge
on the rising limb (as shown in Figure 2).

This application focuses on an FDOM time series that has already been
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Figure 2: Counterclockwise FDOM-Q hysteresis loops at Sleepers River, W-9 (from Shan-
ley et al. (2015)).

corrected for turbidity and temperature using an automated process. How-
ever, the data still contain errors, often in the form of false peak patterns,
that must be corrected before the time series can be used and accurately
interpreted.. The challenge is distinguishing normal peaks in FDOM (i.e.,
natural increases in FDOM with increases in flow) from false peaks caused by
sensor malfunction, electrical surges, or other non-hydrological events such as
a moose stirring up sediment in the gauge pool. Normal FDOM peaks should
be accompanied by a rise in water level and usually a rise in turbidity. The
HF-PPAD framework takes these clues into account and also is trained to
differentiate peak types based on their shapes, with normal peaks generally
having a broad base and an asymmetry skewed towards a long tail. Previous
work on WTSD at SRRW (described in Lee et al. 2021 and Lee et al. 2022)
has identified normal and several anomalous peak types.

4. Watershed Data and Peak-Pattern Anomaly Types

4.1. Watershed time series data

Sensor data were collected from the study watershed over a period six
years and four months (from October 1, 2012 to January 1, 2019). The
measurements of stream stage, turbidity and FDOM were taken at 5-minute
intervals for stream stage and 15 minutes for turbidity and FDOM. The mea-
surements were taken using Turner Designs Cyclops sensors (see Figure 3),
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and used to estimate the stream fluxes of dissolved and particulate organic
carbon. The FDOM measurements were adjusted based on the turbidity
values and the water temperature. The stage data included 231,465 points,
and the turbidity and FDOM data each included 229,620 points.

Figure 3: Turbidity/FDOM sensor mounted on a board immersed in the water. The image
in the corner is a Turner Designs Cyclops-7 submersible sensor.

4.2. Peak-pattern anomaly types

Anomalies in the FDOM and turbidity data were identified through visual
examination and verified by a domain scientist. These identified anomalies
were labeled and used to generate anomalies in the fully labeled synthetic
peak pattern anomaly dataset. There are five types of such anomalies: sky-
rocketing peak (SKP), plummeting peak (PLP), flat plateau (FPT), flat sink
(FSK), and phantom peak (PP). Figure 4 shows examples of such peak pat-
terns from the FDOM time series data. Skyrocketing peaks are characterized
by a sharp upward spike or a narrow peak with a short base width, while a
sharp downward spike characterizes plummeting peaks. These types of peaks
may be caused by electronic sensor noise. Flat plateaus and flat sinks are
characterized by a nearly constant signal amplitude at the top (plateau) and
the bottom (sink), respectively, and may be caused by sediment deposits near
or around the sensors. Flat sinks are only observed in FDOM data. Phantom
peaks appear as normal peaks, but do not have a preceding stage rise that
would trigger the peak. Non-hydrological events, such as animal activity in
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the water near the sensor may be the cause. To detect phantom peaks and
plummeting peaks, it is necessary to consider the relationships between two
data time series, while the other peak types can be identified using only one
type of time series data.

Figure 4: Examples of anomalous peak-patterns types identified in FDOM time series
data.

5. The AutoML Pipeline of HF-PPAD Framework

The fully automated pipeline of HF-PPAD framework is divided into
two parts: one that automates creating a training set, and another that
generates the best deep learning classifier through the tuning of architectural
and training parameters of each model in the given pool. The generation of
a model involves building and comparing different architectural instances of
the model in conjunction with different training parameters. Figure 5 shows
an instance of the framework implemented in the current work. In this
implementation, HF-PPAD includes a range of sub-models drawn from a pool
of state-of-the-art deep learning models, such as InceptionTime, MiniRocket,
ResNet, TCN and LSTM as well as tools for generating time series data,
injecting pattern anomalies into synthetic data, and tuning hyperparameters.

5.1. Synthetic data generation
To generate synthetic watershed time series data (WTSD), we utilize

the state-of-the-art time series generator TimeGAN, which uses a generative
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Figure 5: The implemented HF-PPAD automated supervised machine learning framework.

adversarial network (GAN) to output data that is nearly identical to the
input data. We begin by obtaining a small portion of clean WTSD, such as
clean data of one year, and use it to generate a large amount of synthetic
data with TimeGAN.

To create a labeled dataset for supervised learning, we augment and inject
anomalies into synthetic data using a small number of ground truth labels.
This process enables us to create a sufficiently large training dataset with
minimal manual labeling while also addressing data sparsity and skewness
issues that are common in watershed time series data.

To generate synthetic anomalies, we, again, utilize the state-of-the-art
time series generator TimeGAN. By generating multiple altered versions of
the identified peak pattern anomalies, we have obtained a sufficient num-
ber of instances of each anomaly type to train the deep learning models.
These synthetic anomalies are then injected at random positions within the
synthetic FDOM and turbidity time series data generated by TimeGAN to
mimic the random occurrence of anomalies in real data. This results in a
fully prepared and labeled training dataset for the deep learning classifiers.
The importance of this step lies in creating a multi-class labeled peak pat-
tern anomaly dataset suitable for training deep learning classifiers. Figure 6
shows the typical labeled peak-patterns anomalies injected into the generated
synthetic time series data.
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Figure 6: Labeled anomalous peak patterns injected into synthetic time series data.

5.2. Generating the best deep learning classifier

HF-PPAD handles the best model generation problem as an optimal
search problem in a parameter space pertaining to the models. Each model
has its own search space that includes a range of individual architectural
and training hyperparameters to choose from. These hyperparameters are
automatically tuned using optimizers to find the best model instance from
a pool of select models. This automated process is particularly helpful for
hydrologists who may not have adequate expertise in machine learning.

5.2.1. Model instance search using hyperparameter optimization

Algorithm1 outlines the AutoML algorithm of the HF-PPAD framework.
This algorithm tunes each model in the given model pool one at a time
using hyperparameter optimization techniques and outputs a model instance
expected to achieve the top performance based on the evaluation results.

There are three aspects important to the efficacy of Algorithm1: search
space, search strategy, and evaluation strategy. Each is discussed below.

The search space is defined by a set of hyperparameters and their ranges.
These ranges can be defined based on the specific needs and knowledge of
the user. In our implementation of HF-PPAD, the hyperparameters are
the machine learning models in the input pool, the architectural parameters
pertaining to each model (see Table 1), and the training parameters that are
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Algorithm 1: AutoML algorithm of HF-PPAD against the WTSD.

Input : a pool of models {M1, M2, ..., Mn};
synthetic watershed time series data (WTSD);
user’s performance preference;

Output: the model instance showing the highest performance for
the WTSD;

1 for each model Mi (i = 1, 2, ..., n) in the pool do
2 Generate the best model instances m̂i from the models in the

pool that achieves the highest accuracy during training on
synthetic WTSD by tuning Mi’s architectural and training
parameters through hyperparameter optimization;

3 Get the user’s performance preference w and recommend the best
model instance using Equation 1;

4 Test the recommended best model instance Tr(m̂i) against the
real test dataset to detect peak-pattern anomalies;

5 end for
6 Return the trained model instance that has the highest performance

score in the result pool;

common across all models (see Table 2). Overall, the search space allows for
thoroughly exploring and optimizing various hyperparameters to identify the
most suitable model instance and hyperparameter settings for a given data
set.

The search strategy determines the process for iteratively selecting and
evaluating combinations of hyperparameter values within the search space.
The search strategy may be modified based on prior evaluations to improve
future trials, or it may loop through all possible combinations within the
search space. An effective search strategy can reduce the time required for
the optimization process. For this work, we use Optuna, a tool for hyper-
parameter optimization that includes the four hyperparameter optimizers
chosen in this work (i.e., random forest, Bayesian, Hyperband, and greedy).
These optimizers are included as hyperparameters themselves in the search
space, and on each trial, the AutoML algorithm selects the optimizer that
provides the best result. The select optimizer then optimizes the architec-
tural and training hyperparameters of the chosen model. The search time
is directly proportional to the number of trials conducted. Increasing the
number of trials can improve the results but can also increase the tuning
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Hyperparameter Domain

Number of layers [18, 34, 50, 101, 152]
Number of filters [16 – 1024]
Kernel size [1, 3, 5, 7]
Stride [1, 2]
Padding [0, 1]
Pooling layer window size [2×2, 3×3]

(a) ResNet.

Hyperparameter Domain

Number of Inception modules [1 – 6]
Number of filters [32 – 512]
Filter size [3, 5, 7, 11]
Stride [1, 2]
Pooling layer window size [3 – 7]
Dropout rate [0.1 – 0.5]

(b) InceptionTime.

Hyperparameter Domain

Number of random kernels [100 – 5000]
Kernel sizes [7 – 21]
Subsampling factor [2 – 10]
Normalization [true, false]
Number of random Fourier features [1000 – 5000]

(c) MiniRocket.

Hyperparameter Domain

Number of layers [1 – 5]
Number of hidden units [16 – 512]
Dropout rate [0.1 – 0.5]
Recurrent dropout rate [0.1 – 0.5]
Bidirectional [yes, no]
Activation function [Sigmoid, Tanh, ReLU]
Recurrent activation function [Sigmoid, Tanh, ReLU]
Layer normalization [yes, no]

(d) LSTM.

Hyperparameter Domain

Number of layers [2 – 100]
Kernel size [1, 3, 5]
Dropout rate [0.1 – 0.5]
Number of input channels [1 – 64]
Number of filters [32 – 1024]
Stride [1, 2]
Dilation [1 – 4]
Padding [0, 1]

(e) TCN.

Table 1: Architectural hyperparameters of the individual deep learning model types used
in HF-PPAD.

time.
The evaluation strategy is crucial, as it determines how the effectiveness

of a model is evaluated with respect to its hyperparameters. The evaluation
criteria, such as the validation performance and the total number of model
parameters, are typically the same as those used in manual tuning. We
also consider such factors as time/epoch, the number of parameters, and the
memory usage for each model. By thoroughly evaluating the performance of
each model and its corresponding hyperparameters, HF-PPAD can identify
the most suitable model instance for a given data set.

5.2.2. User preference-based best model instance selection

Our automated peak-pattern anomaly detection framework HF-PPAD
assists users in identifying the most appropriate machine learning model for
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Hyperparameter Domain

Batch size 32, 64, 128, 256, 512
Optimizer SGD, Adam
Learning rate 1e-6, 1e-5, 1e-4, 1e-3, 1e-2
Regularization L1, L2, dropout

Table 2: Training hyperparameters common to all the deep learning models in the pool.

their WTSD. The algorithm conducts exhaustive tuning of architectural and
training hyperparameters to determine the optimal instance of each model.
The effectiveness of each model instance is then evaluated using Equation 1,
which takes into account both the accuracy achieved and the computational
cost incurred during the tuning process. The user is also asked to spec-
ify a weight indicating the relative importance of lower computational cost
(e.g., training time and memory usage) compared to higher accuracy. This
weight is linearly related to the computational cost and allows for personal-
ized model instance recommendations based on the user’s specific needs and
preferences. By doing so, it helps users to make informed decisions about the
best model instance for their specific data set, considering both performance
and computational cost.

Qmi
= (1− w)Ami

+ w(1− Smi
) (1)

where mi (i = 1, 2, . . . , n) is an instance of a model Mi in the pool; Qmi
is

the output quality achieved using the model instance mi; Ami
is the accuracy

achieved using the model instance mi; Smi
is the size of mi normalized by

the maximum possible size of all instances of Mi and w is the user-provided
weight of a smaller model size (i.e., (1 − Smi

)) over higher accuracy (i.e.,
Ami

). The size of a deep learning model can be determined by looking at the
number of parameters. To determine the size of a deep learning model, we
convert the total number of parameters to a more readable format, such as
megabytes (MB) or gigabytes (GB), by dividing by the number of bytes per
parameter (usually 4 for float32 data type).

6. Experiments

The HF-PPAD implementation performed on the WTSD used here has
been evaluated thoroughly. There are three main questions answered through
experiments:
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• How similar is the synthetic time series dataset (with labeled peak-
pattern anomalies injected) to the original real dataset from theWTSD?
(See Section 6.2.)

• How well do the generated best individual deep learning models per-
form? (See Section 6.3.)

• How well does the autoML pipeline adapt to the user-specified pref-
erence between accuracy and computational cost to select the deep
learning model that meets the preference best? (See Section 6.4.)

6.1. Setup

Datasets. One year (from October 1, 2016 to September 30, 2017) worth
of clean FDOM and turbidity data was used in all the experiments. This
dataset has 105,120 points. They were passed to TimeGAN, the machine
learning algorithm selected for generating synthetic labeled data, to create a
dataset of 1,048,575 time series samples; the dataset was then split into 70%
training and 30% validation datasets. TimeGAN was then trained for 5,000
epochs, as recommended by Yoon et al. (2019), to ensure that it captured the
main features and patterns of the real data. Subsequent to the generation of
the clean synthetic data, TimeGAN was used to generate synthetic instances
of anomalous peak patterns (see Figure 6). Synthetic versions of 400 to 500
anomalous peak patterns were created for each type of anomaly and randomly
injected into the synthetic dataset. The resulting dataset containing clean
time series samples interspersed with anomalous peak patterns was used to
train and validate the deep learning models in the pool. The trained models
were then tested on real data containing real peak pattern anomalies.

Deep learning models. The deep learning models in the pool included In-
ceptionTime, MiniRocket,ResNet,TCN and LSTM. Each model has its own
search space for architectural hyperparameters and a common search space
for training hyperparameters as discussed in Section 5.2.1. The tuning of
these hyperparameters was carried out using Optuna, a hyperparameter op-
timization library. Four such optimizers, including random forest, Bayesian,
Hyperband, and greedy search, were included in the search space to find
the best model instance for each deep learning model. The hyperparameter
optimization process for each deep learning model was run for 1,000 trials
with early stopping triggered when the validation loss did not improve for
ten consecutive epochs. For validation, we used 70% of the training dataset,
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selected through shuffling. The resulting best model instances of the models
were then trained for 50 epochs and tested against the WTSD test dataset
using the user-provided performance objective (see Equation 1). The model
instance that achieves the highest performance score in the test was then
output.

Performance metrics. For the anomaly detection task, the performance achieved
by a trained deep learning model comprises accuracy and computational cost.
The accuracy used in this work are balanced accuracy (i.e., 1

2

(
TP

TP+FN
+ TN

TN+FP

)
)

and F-1 score (i.e., 2 · Precision·Recall
Precision+Recall

). The computational costs are the time
and memory consumed during model training. For simplicity, we use the
number of model parameters as a proxy measure of computational cost, as
both the training time and memory are proportional to it. We also report
other parameters relevant to the model training, such as validation loss, epoch
time, and the number of epochs.

Computing platform. All experiments were performed on Google Colab Pro
platform, which provided access to a NVIDIA Tesla T4 GPU with 16GB of
memory and an Intel Xeon E5-2670 v3 CPU with 8 cores and 30GB of mem-
ory. The programming language used was Python, with libraries including
PyTorch and pandas.

6.2. Similarity of the synthetic dataset to the real dataset

As mentioned, the synthetic data points were generated using TimeGAN
based on a clean dataset collected from the WTSD at SRRW. In order to
evaluate the accuracy of the generated synthetic dataset, we selected two
dominant variables, turbidity (for the x axis) and FDOM (for the y axis),
from stage, turbidity, and FDOM through dimensionality reduction by PCA
and by t-SNE, respectively, and generated clusters of the resulting data points
in the 2D space of turbidity × FDOM. Figure 7 shows the clusters of data
points generated through PCA (left) and t-SNE (right). In both plots, the
clusters of the original data points (blue) and the synthetic data points (red)
are almost the same, which demonstrates the high similarity between the real
and synthetic datasets.

To further verify the similarity, we trained an RNN regression model
separately on real data and on synthetic data, and tested the two trained
models against a separate real dataset. The RNN model consists of a single
GRU (Gated Recurrent Unit) layer with 12 units and a dense output layer
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Figure 7: Clusters of the synthetic and the original time series data points in a 2D turbidity
× FDOM space generated by PCA (left) and t-SNE (right).

Training data
Test accuracy

R2 MAE MSE
Synthetic 0.301858 0.016981 0.003859
Real 0.315577 0.016683 0.003672

Table 3: Test accuracy of RNN regression models trained on synthetic dataset and real
dataset and then tested on real dataset.

with six units and a Sigmoid activation function. The optimizer used is Adam
and the loss function is mean absolute error (MAE). Table 3 summarizes
the test accuracy (R-squared (R2), mean absolute error (MAE), and mean
squared error (MSE)) achieved by the two trained RNN models. The test
accuracy of the model trained on the synthetic data was close to the test
accuracy of the model trained on real data (within 4% for R2, 2% for MAE,
and 5% for MSE), confirming that the synthetic data generated by TimeGAN
is a suitable substitute for real data in training the machine learning models
for the WTSD.

6.3. Anomaly detection performances of the best instances of the models

HF-PPAD generated best model instances and used synthetic datasets
generated from the WTSD for training, and then tested the trained best
model instances on the real dataset. Tables 4 and 5 summarize the perfor-
mance results for each best trained model instance from the pool of models.
All five models achieved high accuracy (70.2% to 97.3% for balanced accu-
racy and 64.7% to 94.6% for F-1 score across FDOM and turbidity), which
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Model Balanced accuracy F-1 score # of parameters Training time Epoch time # of epochs
InceptionTime 97.3% 93.6% 1,817,888 350.5 sec 7 sec 50
ResNet 95.3% 90.1% 8,130,502 550.2 sec 11 sec 50
MiniRocket 93.4% 88.2% 89,974 150.6 sec 3 sec 50
LSTM 70.2% 64.7% 17886 50.8 sec 1 sec 50
TCN 90.7% 85.9% 68,556 60.2 sec 1.2 sec 50

Table 4: FDOM peak-pattern anomaly detection performance by the best trained model
instance of each model in the HF-PPAD’s model pool.

Model Balanced accuracy F-1 score # of parameters Training time Epoch time # of epochs
InceptionTime 95.3% 89.9% 4,082,884 467.2 sec 9.34 sec 50
ResNet 98.3% 94.6% 11,921,636 721.5 sec 14.43 sec 50
MiniRocket 91.6% 85.1% 118,974 349.7 sec 6.94 sec 50
LSTM 74.2% 67.7% 23886 70.8 sec 1.4 sec 50
TCN 88.1% 81.9% 96,556 90.4 sec 1.8 sec 50

Table 5: Turbidity peak-pattern anomaly detection performance by the best trained model
instance of each model in the HF-PPAD’s model pool.

indirectly affirms the best model generation ability of HF-PPAD. The com-
putational costs varied more significantly than accuracy depending on the
model. Notably, the best trained LSTM model instance, which achieved the
lowest accuracy, also incurred the lowest computational cost. This observa-
tion confirms the trade-off that leads to user-provided performance preference
addressed below in Section 6.4.

To further examine model performance with a focus on the anomaly de-
tection accuracy, we have created the confusion matrices shown in Figure 8
for FDOM and Figure 9 for turbidity. Overall, the detection accuracy for
all peak-pattern anomaly types are very high, which demonstrates the effi-
cacy of the best model instance generation and training using the synthetic
dataset. Particularly, the accuracy for the peak-pattern anomaly types FSK
and FPT are 100% for all the best model instances; we believe this accuracy
is attributed to a long sequence of their anomaly instances that differentiate
them from the other types of peak pattern anomalies. The accuracy for NAP
is relatively lower than other anomaly types, as apparently some of them are
mistaken as PP, PLP, or SKP peaks. Note that NAP is not an anomalous
peak type.

6.4. User input based best model instance selection

Recall that, the HF-PPAD approach recommends the best model instance
for a dataset based on user preferences for accuracy and model size. Output
quality was measured for the best trained model instance of each model using
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ResNet InceptionTime MiniRocket

TCNLSTM

Figure 8: Confusion matrix of FDOM peak-pattern anomaly detection accuracy by the
best trained model instance of each model in the HF-PPAD’s model pool.

Equation 1) and varying the weight parameter w from 0 to 1 at the incre-
ment of 0.2 for the FDOM and turbidity datasets. The results are shown
as clustered bar charts in Figure 10. The InceptionTime model instance had
the highest accuracy for FDOM (0.973) at w = 0, whereas the TCN and
MiniRocket model instances achieved the highest output quality (0.977 and
0.974, respectively) at w = 0.8. For turbidity, ResNet had the highest accu-
racy (0.983) at w = 0, while TCN and MiniRocket had the highest output
quality (0.975 and 0.969, respectively) at w = 0.8. We can summarize that
TCN and MiniRocket are recommended for users who prioritize accuracy and
low computational cost, while InceptionTime and ResNet are best for users
who prioritize high accuracy; and additionally that LSTM is recommended
for users who prioritize low computational cost, despite its lower accuracy,
as it has a smaller model size compared to the other models.

Figure 11 shows a line graph of the output quality of the best model
instance of each model as the user preference input w increases (at the in-
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ResNet InceptionTime MiniRocket

TCNLSTM

Figure 9: Confusion matrix of turbidity peak-pattern anomaly detection accuracy by the
best trained model instance of each model in the HF-PPAD’s model pool.

crement of 0.1). It visualizes the trends of the output qualities changing
between the different models. Specifically, it exhibits a decrease in the out-
put quality of a model with a larger size as the w value increases. Notably,
the MiniRocket and TCN models are competitive options for users who pri-
oritize accuracy and low cost computational requirements. In contrast, the
LSTM model only achieves higher output quality when w is 0 due to its
smaller size. Overall, the figure highlights the varying output quality of the
models and provides valuable insights into selecting the appropriate model
based on user preferences.

7. Conclusion

This paper presented an anomaly detection framework using automated
machine learning (AutoML) on WTSD from the northeast US critical zone.
The framework is designed to assist hydrologists in identifying anomalous
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(a) For FDOM WTSD.

(b) For turbidity WTSD.

Figure 10: Comparison of the output quality achieved by the best model instance of each
model for different values of the weight w ∈ [0, 1]; the weight indicates how much the user
prefers small model size to high accuracy.

events in their data, such as peak-pattern anomalies in FDOM and turbidity,
without needing expert knowledge in machine learning or anomaly detection
algorithms. The framework consists of two main components: a synthetic
labeled dataset generator and an automated best model instance generator.
During implementation, we used TimeGAN for the synthetic dataset genera-
tion, and used InceptionTime, ResNet, MiniRocket, TCN and LSTM as the
models in the pool; then the model instance that is best overall considering
both accuracy and computational cost (i.e. model size) was identified (for
recommendation) according to the user preference.

Our work is the first to utilize automated machine learning for peak pat-
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(a) For FDOM WTSD.

(b) For turbidity WTSD.

Figure 11: Changes of the output quality achieved by the best model instance of each
model for the weight w increasing from 0 to 1.

tern anomaly detection in WTSD. Our approach includes synthetically gener-
ated time series data and thorough hyperparameter optimization for model
generation, demonstrating the potential of AutoML for time series classi-
fication tasks in hydrology. Experiments conducted demonstrate the high
performance achieved by our framework applied to WTSD. Our contribution
offers an innovative approach for efficient peak pattern anomaly detection in
WTSD, providing a valuable tool for hydrologists and related stakeholders
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in water management.
For future work, we plan to improve the framework by incorporating ad-

ditional machine learning models and expanding the search space for model
generation; we also plan to test the framework on a wider range of WTSD
and other environmental sensors data (e.g., snow and air humidity) to vali-
date its generalizability. Additionally, we plan to investigate the use of the
framework for other domains of anomalous events, such as those observed in
water quality monitoring and flood forecasting. By continuing to refine and
expand the capabilities of the framework, we hope to make it an essential tool
for hydrologists in their efforts to monitor and understand water resources.

8. Acknowledgments

This material is based upon work supported by the National Science
Foundation under Grant No. EAR 2012123. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science
Foundation. Any use of trade, firm, or product names is for descriptive pur-
poses only and does not imply endorsement by the U.S. Government. The
work was also supported by the University of Vermont College of Engineering
and Mathematical Sciences through the REU program. The authors would
like to thank the US Geological Survey (USGS) for offering the domain exper-
tise that was crucial to identify the peak anomaly types that are of practical
importance.

References

Aggarwal, C. C. (2013). Outlier ensembles: position paper. ACM SIGKDD
Explorations Newsletter, 14(2), 49-58.

Bahri, M., Salutari, F., Putina, A., and Sozio, M. (2022). AutoML: state
of the art with a focus on anomaly detection, challenges, and research
directions. International Journal of Data Science and Analytics, 1-14.

Chatterjee, S., Bopardikar, R., Guerard, M., Thakore, U., and Jiang, X.
(2022). MOSPAT: AutoML based Model Selection and Parameter Tuning
for Time Series Anomaly Detection. arXiv preprint arXiv:2205.11755.

Chandola, V., Banerjee, A., and Kumar, V. (2009). Anomaly detection: A
survey. ACM computing surveys (CSUR), 41(3), 1-58.

25

http://arxiv.org/abs/2205.11755


Cho, H., and Fryzlewicz, P. (2015). Multiple-change-point detection for high
dimensional time series via sparsified binary segmentation. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 77(2), 475-
507.

Dramsch, J. S. (2020). 70 years of machine learning in geoscience in review.
Advances in geophysics, 61, 1-55.

Dempster, A., Schmidt, D. F., & Webb, G. I. (2021, August). Minirocket: A
very fast (almost) deterministic transform for time series classification. In
Proceedings of the 27th ACM SIGKDD conference on knowledge discovery
& data mining (pp. 248-257).

Deng, L., & Yu, D. (2014). Deep learning: methods and applications. Foun-
dations and trends® in signal processing, 7(3–4), 197-387.

Evans, C., and Davies, T. D. (1998). Causes of concentration/discharge hys-
teresis and its potential as a tool for analysis of episode hydrochemistry.
Water Resources Research, 34(1), 129-137.

Enikeeva, F., and Harchaoui, Z. (2019). High-dimensional change-point de-
tection under sparse alternatives. The Annals of Statistics, 47(4), 2051-
2079.

Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., & Hut-
ter, F. (2015). Efficient and robust automated machine learning. Advances
in neural information processing systems, 28.

Fearnhead, P., and Rigaill, G. (2019). Changepoint detection in the presence
of outliers. Journal of the American Statistical Association, 114(525), 169-
183.

Fryzlewicz, P. (2014). Wild binary segmentation for multiple change-point
detection. The Annals of Statistics, 42(6), 2243-2281.

Feurer, M., and Hutter, F. (2019). Hyperparameter optimization. In Auto-
mated machine learning (pp. 3-33). Springer, Cham.

Hamshaw, S., Denu, D., Holthuijzen, M., Wshah, S., & Rizzo, D. (2019).
Automating the classification of hysteresis in event concentration-discharge
relationships. In Conference: SEDHYD 2019 conference, At Reno, Nevada.
https://www. sedhy d. org/2019/openc onf/modul es/reque st. php.

26



Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural
computation, 9(8), 1735-1780.

Haq, I. U., Khan, Z. Y., Ahmad, A., Hayat, B., Khan, A., Lee, Y. E.,
& Kim, K. I. (2021). Evaluating and Enhancing the Robustness of Sus-
tainable Neural Relationship Classifiers Using Query-Efficient Black-Box
Adversarial Attacks. Sustainability, 13(11), 5892.

Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., and Muller, P. A.
(2019). Deep learning for time series classification: a review. Data mining
and knowledge discovery, 33(4), 917-963.

Ismail Fawaz, H., Lucas, B., Forestier, G., Pelletier, C., Schmidt, D. F.,
Weber, J., ... and Petitjean, F. (2020). Inceptiontime: Finding alexnet for
time series classification. Data Mining and Knowledge Discovery, 34(6),
1936-1962.

Jin, H., Song, Q., & Hu, X. (2019, July). Auto-keras: An efficient neural
architecture search system. In Proceedings of the 25th ACM SIGKDD
international conference on knowledge discovery & data mining (pp. 1946-
1956).

Jing, E., Zhang, H., Li, Z., Liu, Y., Ji, Z., and Ganchev, I. (2021). ECG
heartbeat classification based on an improved ResNet-18 model. Compu-
tational and Mathematical Methods in Medicine, 2021.

Khan, Z. Y., Niu, Z., Nyamawe, A. S., & ul Haq, I. (2021). A Deep Hy-
brid Model for Recommendation by jointly leveraging ratings, reviews and
metadata information. Engineering Applications of Artificial Intelligence,
97, 104066.

Kotthoff, L., Thornton, C., Hoos, H. H., Hutter, F., & Leyton-Brown, K.
(2019). Auto-WEKA: Automatic model selection and hyperparameter op-
timization in WEKA. Automated machine learning: methods, systems,
challenges, 81-95.

Koren, O., Hallin, C. A., Koren, M., & Issa, A. A. (2022). AutoML classifier
clustering procedure. International Journal of Intelligent Systems, 37(7),
4214-4232.

27
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