Barnhart et al., 2016

Talk/Poster

Bidirectional Response of Runoff to Changes in Snowmelt Rate, Timing, and Amount

Barnhart, T.B.; Molotch, N.P.; Tague, C. (2016)
Fall Meeting, American Geophysical Union, December 2016. Abstract H51N-05.  

Abstract

The mountain snowpack is important for runoff generation across the western United States and for one sixth of Earth’s population. Climate change induced near surface warming alters the amount of precipitation that falls as snow causing changes in the amount, rate, and timing of snowmelt. Recent work links snowmelt rate to streamflow production across the western United States. Snowmelt rate has also been linked to snowpack magnitude and snowmelt timing. This work seeks to disentangle the relationships between snowmelt rate, timing, and amount to reveal the dominant streamflow generating factor and the physical mechanism through which snowmelt becomes runoff. We use co-located observations of evapotranspiration and snowmelt from Niwot Ridge, CO (3023 m), the Valles Caldera, NM (3030 m), and Providence Creek, CA (2015 m) as well as the Regional Hydro-Ecologic Simulation System (RHESSys) to assess the linkage between snowmelt rate, amount, timing, and runoff. We conducted ~100,000 RHESSys simulations at each site varying the timing, amount, and rate of snowmelt based on the observational record. Analyses of observational data show that years with large peak SWE partition more snowmelt to runoff than to evapotranspiration (r2=0.82, p=0.005). For example water year 2011 with a peak SWE of 0.43 m and a snowmelt rate of 0.62 cm d-1 partitioned 34% of snowmelt to ET. Conversely, water year 2006 with a peak SWE of 0.32 m and a snowmelt rate of 0.1 cm d-1 partitioned 54% of snowmelt to ET. Our simulation results show a bidirectional response between snowmelt rate and timing and runoff efficiency where early, slow snowmelt results in a low runoff efficiency while early, rapid snowmelt results in high runoff efficiency because of a mismatch in water availability and demand (a). Simulation results show a strong relationship between runoff efficiency and snowmelt suggesting that rapid snowmelt is better able to bring the root zone to field capacity and move water to the shallow groundwater system. Indeed, there is strong correspondence between runoff efficiency and root zone drainage showing that rapid snowmelt is better able to generate runoff than slow snowmelt by inducing recharge below the root zone (b). Furthermore, as climate warming decreases the mountain snowpack and causes earlier snowmelt, runoff is likely to decrease.

Citation

Barnhart, T.B.; Molotch, N.P.; Tague, C. (2016): Bidirectional Response of Runoff to Changes in Snowmelt Rate, Timing, and Amount. Fall Meeting, American Geophysical Union, December 2016. Abstract H51N-05..