Preview of Award 1331726 - Annual Project Report

Cover
Federal Agency and Organization Element to Which Report is Submitted: 4900

Federal Grant or Other Identifying Number Assigned by Agency: 1331726

Project Title: Using the Susquehanna - Shale Hills CZO to Project from the Geological Past to the Anthropocene Future

PD/PI Name: Susan L Brantley, Principal Investigator
Kenneth J Davis, Co-Principal Investigator
David M Eissenstat, Co-Principal Investigator
Li Li, Co-Principal Investigator

Recipient Organization: Pennsylvania State Univ University Park

Project/Grant Period: 10/01/2013 - 09/30/2019

Reporting Period: 10/01/2017 - 09/30/2018

Submitting Official (if other than PD/PI): Susan L Brantley Principal Investigator

Submission Date: 10/01/2018

Signature of Submitting Official (signature shall be submitted in accordance with agency specific instructions) Susan L Brantley

Back to the top
Accomplishments

* What are the major goals of the project?

Overall Project: We are learning to earthcast the CZ. To us, earthcasting means developing quantitative models for earth surface evolution that will enable us to project into the future. We plan to do this by creating models to describe fluxes we see today, by testing the models by hindcasting the geologic record, and then using those models to make forecasts. We focus on a 165 km2 watershed in central PA (Shavers Creek). We have developed an observational model to measure important aspects of the CZ in this large watershed. Over short timescales and large spatial extents, we are developing an atmosphere-land surface model that couples meteorological and ecological processes with hydrological and biogeochemical processes in regolith using information about i) depth to bedrock; ii) permeability; iii) water uptake by roots; iv) distribution of fractures and macropores. Over long timescales and smaller spatial extents, we are developing models that predict these regolith characteristics. The models that treat these various processes are built on the Penn State Integrated Hydrologic Model (PIHM). With different modules in PIHM we plan to model changes in water, energy, sediment, and solute (WESS) fluxes at various timescales. For the sedimentary rocks underlying our CZO, we use these models to explore how the geological past has impacted the structure of regolith, and, in turn, how this structure contributes toward controlling today’s fluxes.

While working on this big picture effort, we have structured our group into 9 teams, identified by 9 driving hypotheses, as described below.

H1 Team Goal: The H1 team is testing the following hypothesis while measuring fracture distributions, using measurements of cosmogenic to assess erosion rates; using boreholes, field observations, and geophysics to predict the structure of porosity and permeability in Shavers Creek watershed and surrounding relevant sites: H1. Feedbacks among frost shattering, weathering reactions, and the evolution of topography have resulted in an asymmetric distribution of fractures that in turn controls the observed differences in fluid flow in the subsurface between the sun-facing and shaded sides of catchments within Shale Hills and much of the Susquehanna River Basin. (Kirby, Bierman, DiBiase, West, Brantley, Lin)

H2 Team Goal: This team is testing the following hypothesis while developing as complete a dataset as possible that allows understanding of the distribution of soil gases, soil moisture, and organic acids and their effects on weathering of regolith in the Shavers Creek watershed: H2. The distribution of weathering reactions across a landscape can be described as a function of biotic and abiotic production and consumption of acids (CO₂, DOC) and O₂. (Kaye, Brantley, Eissenstat, Li)

H3 Team Goal: Team H3 is testing the following hypothesis while developing as complete a dataset as possible that allows understanding of the distribution of tree roots and their effects on water cycling, weathering, fungal distribution, macropores, erosion, and tree throw in the Shavers Creek watershed: H3. Trees with deeper roots (oaks) are associated with less frequent tree throw, slower hillslope erosion rates, fewer vertical macropores, faster weathering at depth, and deeper regolith than trees with shallower roots (maples). (Eissenstat, Davis, Kaye, Brantley)

H4 Team Goal: This team is testing the following hypothesis while developing as complete a dataset as possible that allows understanding of the distribution of regolith and macropores in regolith and their controls on fluid flow among the lithologies within the Shavers Creek watershed. H4. Macropores are important in controlling fluid flow and chemistry in soils derived from various lithologies, but the nature and effects of these macropores differ significantly among shale, calcareous shale, and sandstone. (Lin, Duffy, Eissenstat, Davis)

H5 Team Goal: Team H5 is testing the following hypothesis while developing as complete a dataset as possible that allows understanding of the controls on regolith chemistry and mineralogy using a reactive transport model developed for simulation of regolith formation: H5. Greater evapotranspiration on the sunny, north side of Shale Hills means that less water recharges to the stream, explaining why Mg and other cations are less depleted in the regolith on the north compared to the south hillslopes. (Li, Brantley, Kaye, Russo)

H6 Team Goal: Team H6 is testing the following hypothesis while developing as complete a dataset as possible that allows understanding of the controls on solute concentrations in stream waters of subcatchments within the Shavers Creek watershed, using a reactive transport modelling approach: H6. Ions that are released quickly from ion exchange sites (Mg, Na, K) throughout the catchment demonstrate chemostatic behavior (~constant concentration in the stream), whereas Fe, Mn, and DOC concentrations vary with changes in watershed-stream connectivity. (Russo, Brantley, Li, Kaye, Shi, Duffy)

H7 Team Goal: This team is testing the following hypothesis while developing as complete a dataset as possible that allows understanding of the fluxes of carbon and water in the Shavers Creek watershed using PIHM modelling: H7. Land-atmosphere fluxes of carbon (C) and water, ground-water hydrology, and ecosystem change are coupled processes at time scales of months to decades. This coupling varies with the lithology and land use and position on the hillslope. (Davis, Shi, Eissenstat, Duffy, Lin, Kaye)

H8 Team Goal: The H8 team is testing the following hypothesis while developing as complete a dataset as possible that allows multi-scale modelling to project physical processes from Shale Hills to Shavers Creek: H8. Co-located, intensive, relocatable measurements of soil moisture, tree sap flux, sapwood area, LAI, ground water depth, temperature, °O and D/H along with a 4-component radiometer, laser precipitation monitor and landscape-level soil moisture (COSMOS) can be assimilated within a multi-scale distributed modeling framework to project physical processes from Shale Hills to Shavers Creek to Young Woman’s Creek and Snake Creek watersheds. (Shi, Duffy, Davis, Eissenstat, Lin, Duffy)

Chris Duffy has indicated he would like to have minimal involvement with the CZO other than with respect to PIHM modelling. Instead, Yuning Shi, who has been involved in the CZO since its inception and now works part time on the project, is leading the H8 team in collaboration with Li Li.
RPPR - Preview Report

H9 Team Goal: The H9 team is spearheading measurements to understand weathering processes in the target catchments and using models to earthcast weathering and other CZ processes into the future while testing the following: H9. Increasing atmospheric CO$_2$ in the future will cause higher temperatures and faster weathering of clays in the catchment, increasing streamwater solute loads. (Brantley, Godderis, Li, Duffy, Davis, Shi) Pam Sullivan was a postdoctoral student working on this project and she is now an assistant professor at University of Kansas where she is writing up two papers on CZO research. Two seed grants provided data for this team effort. A USGS Seed Grant funded Carleton Bern and the Kent State Seed Grant was used by E. Herndon at Kent State to evaluate the spatial distribution of dissolved and colloidal elements in soils, groundwater, and surface water in the SSHCZO catchment.

* What was accomplished under these goals (you must provide information for at least one of the 4 categories below)?

Major Activities:

Overall Major Activities

The entire team has made large advances in measuring and modelling our target landscape within the CZO. We have also made our first steps toward upscaling. In addition, the entire team helped run the Arlington meeting -- National Critical Zone Science Workshop: Current Advances & Future Opportunities -- and we helped publish the paper in Earth Surface Dynamics describing a proposed design for a CZO network. Finally, we also published our paper from our tree workshop. Also during this year, we completed publication of the fourth paper that was written by one of our seed grantees. Specifically, we gave seed grants to outside scientists to work at our CZO and each group of scientists have now published papers from their work at the CZO. We gave each of those groups funding from our NSF funds.

Our major activities for this past year are described below for each team.

H1. The H1 team has begun working at the agricultural subcatchment (Cole Farm), with the goal of distinguishing anthropogenic versus periglacial drivers of hillslope erosion and colluvial valley aggradation. MS Student Perri Silverhart (advised by R. DiBiase) has collected soil samples for 137Cs analysis along two opposing hillslope transects at Cole Farm to quantify decadal patterns of erosion and deposition, with measurement beginning in fall 2018. Topographic analysis using lidar data, analysis of historical air photos, and field mapping of soil thickness provide additional constraints on land use history and critical zone architecture. We continued collaborations with J. Hayes (Dickinson College) and G. Mount (Indiana University of Pennsylvania) to collect shallow seismic and electrical resistivity tomography data at Cole Farm in summer 2018. At the sandstone catchment (Garner Run), we continued synthesizing geophysical data collected in 2016/2017, and are nearing submission of a manuscript in collaboration with J. Hayes (Dickinson College), X. Comas (Florida Atlantic University), and G. Mount (Indiana University of Pennsylvania). At Bear Meadows, a sandstone site near Garner Run, we conducted exploratory geophysical and drilling work to characterize spatial patterns in periglacial colluvium thickness in a site that is better situated for the long-term preservation of sediments recording landscape response to Pleistocene climate forcing. At Young Womans Creek, a 220 km2 watershed north of Shavers Creek draining the Appalachian Plateau, we completed geologic mapping, stratigraphic analysis, and topographic analysis to complement detrital cosmogenic 10Be analysis done by former MS student A. Denn (U. of Vermont). From this work a paper led by R. DiBiase was submitted in summer 2018 to Earth and Planetary Science Letters and is currently in revision (DiBiase et al., in revision).

H2. The H2 team: 1) published one paper on the N cycle in Shale Hills (Weitzman and Kaye 2018), 2) sampled pore fluid over the year in one shale and one sandstone catchment for a comparison study, 3) established GroundHOG sampling locations at a new agricultural watershed (Cole Farm), 4) sample soil pore fluid at all three catchments (shale forest, sandstone forest, calcareous shale agricultural) for the 2018 growing season, 5) designed and implemented a new study of the effect of windthrown trees on the depth distribution of soil C and forest regeneration, 6) trained two graduate students (Caitlin Hodges, PhD; Ben Dillner, MS), 7) collected new soil cores for extraction of Fe and Mn to test hypotheses regarding links between metals and C across two CZOs (Shale Hills and Calhoun).

H3. The H3 team: 1) finished analysis of the vertical root distribution of trees as affected by shale and sandstone including tree species identification of root distribution by DNA extraction 2) published a paper arising from the Tree Workshop (3) contributed to the broader project goals of tracking leaf phenology, litter fall, green leaf chemistry, radial tree growth, sap flux and soil moisture in the Shale Hills and Garner Run catchments. This team also contributed to understanding root length density and soil respiration as influenced by topography on shale and how mycorrhizal type (Arbuscular mycorrhizal (AM) or ectomycorrhizal (EM)), hillslope position and lithology affect wood decomposition. (4) In addition, this group tested whether roots decompose faster with roots present or not on different lithologies and how much site of origin of the woody debris influences its decomposition (i.e., “home field advantage”).
H4. The H4 team: 1) published 3 papers related to the Shale Hills catchment in collaboration with other team members (see publication list), 2) set up two new soil moisture monitoring sites at the Shale Hills and the Garner Run to test the microtopography controls on macropore flow.

H5. The H5 team 1) developed a code (RT-FLUX-PIHM) that simulates hydrological and geochemical processes at the watershed scale, 2) used RT-Flux-PIHM to understand the concentration discharge relationships for Cl and Mg at Shale Hills, 3) is developing a reactive transport model for a hillslope catena to understand soil development in Shale Hills.

H6. The H6 team 1) continued stream discharge and chemistry, groundwater and soil water chemistry data collection at Cole Farm and along the main branch of Shavers Creek; 2) integrated stream, spring, and groundwater measurements to develop a conceptual model of the controls on shallow subsurface and deeper groundwater fluid and solute transport at Cole Farm; 3) conducted synoptic steam solute and discharge measurement sampling campaigns along the full length of Shaver’s Creek within the CZO; 4) assessed the capability of geospatial and statistical methods to predict stream solute chemistry using readily available spatial datasets.

H7. The H7 team 1) continued to maintain the eddy covariance flux data streams from the Shale Hills watershed (forested, shale bedrock) and Cole Farm (agricultural watershed, calcareous shale bedrock), 2) ran and evaluated the coupled Flux-PIHM-BGC watershed energy-hydrology-biogeochemistry modeling system for Shale Hills watershed, and 3) continued to work towards a multivariate carbon-water data assimilation system that can be applied to the coupled Flux-PIHM-BGC modeling system, and can describe, with good accuracy and precision, the coupled carbon-water-nitrogen cycle in complex topography.

H8. The H8 team 1) conducted hydrological connectivity and discharge-storage relationship analyses using the calibrated land surface and hydrologic model - Flux-PIHM (Penn State Integrated Hydrologic Model with a land surface module) - at Shale Hills and Garner Run; 2) Assessed the relative strength of topography and lithology using the swap experiments based on properties at two sites (results presented at the 2017 AGU Fall meeting and a manuscript has been submitted to WRR); 3) Tested differences between using the COSMOS and the frequency domain reflectometry (FDR) soil moisture measurements in constraining the hydrologic model (Flux-PIHM) with both the Hornberger–Spear–Young (HSY) algorithm and a data assimilation system (the ensemble Kalman filter); 4) Evaluated the influence of measurement locations in constraining the model used the same methods mentioned in 4); 5) Utilized the fast Fourier transform (FFT) to perform the time-frequency analysis on soil moisture time series, which leads to tease out the time representativeness of each soil moisture measurement; 6) Installed a new COSMOS probe in a Cole Farm; 7) performed Flux-PIHM simulations for the Cole Farm; 8) performed Flux-PIHM with deep groundwater simulation for Shale Hills.

H9. The H9 team 1) finished and published two papers on the importance of particle transport in Shale Hills (one of these was published by seed grantee Carleton Bern; 2) submitted a paper describing how we can earthcast weathering and how to use reactive transport modelling in describing weathering at Shale Hills.

Specific Objectives:

Specific Objectives Overall

During the last year, our overall specific objective was to begin the collection of data at the agricultural site and to begin to pull together the data from all teams into upscaling models using the PIHM code.

Specific Objectives Enumerated by Team

H1. Initial fieldwork at the Cole Farm (agricultural) catchment is underway, and soil samples from more than 10 pits have been collected and prepared for 137Cs measurement at Penn State.

H2. The main specific objectives were to 1) repeatedly sample pore chemistry and gas along the three GroundHOG catenas, 2) test mechanisms that explain variation in soil pore chemistry, and 3) publish research on the N cycle and nitrous oxide fluxes at Shale Hills, 3) sample pits and mounds of windthrown trees in shale hills.

H3. Tree and shrub species were determined for the roots collected from soil pits in Shale Hills and Garner Run catchments as well as in sandstone and shale sites in the Tuscarora State Forest in south central Pennsylvania. With respect to coarse woody debris, the goal was to determine whether roots, tree mycorrhizal type, or soil lithology play an essential role in wood decomposition. Also, does coarse wood debris decompose faster under its native canopy, versus an away canopy. We also investigated the role and production of root exudates based on local conditions. We dug two pits, one in the Shale Hills Catchment, and one in the Garner Run Catchment and have gathered samples that will need analysis to determine organic acid content e.g. phosphatase. We have also examined broader vegetation impacts by sampling 25 forest plots (315 meters square) tree basal area, age and radial growth (based on increment cores) with equal distributed across Rose Hill shale and Tuscarora sandstone to assess forest growth on different lithologies in

response to annual variation in temperature and precipitation.

H4. The specific objectives of H4 included the goals i) to comprehensively understand the major space-time factors that govern the occurrence and dynamics of macropore/preferential flow; ii) to develop new field methods of detecting and quantifying preferential flow occurrence; and iii) to enhance the comparison of preferential flow patterns across monitoring sites and catchments.

H5. The specific objective of this team was to develop a quantitative model of regolith formation and to relate observations in the CZO to this model.

H6. The first primary objective was to expand monitoring within the newest subcatchment, Cole Farm, to include deep groundwater, while continuing to measure spring and river water chemistry. The second primary objective was to determine whether lithology and land use datasets are predictors of stream water chemistry within the greater Shaver’s Creek watershed.

H7. The team finished testing the response of the carbon stocks and fluxes to environmental forcing (soil temperature, soil moisture, light, soil hydraulic properties, nutrient availability) using the Biome-BGC ecosystem biogeochemistry model, and in the coupled Flux-PIHM-BGC modeling system, within the Shale Hills watershed.

H8. The team continued to evaluate hydrologic model parameter transferability from Shale Hills to Garner Run; to understand differences in hydrologic processes with different lithology and topography; and to test “must-measure” parameters for hydrologic models using model-data synthesis.

H9. The team has been finishing the writing and publication of the papers on earthcasting and subsurface particle transport.

Significant Results:*

Significant Results Overall

Overall, our team is starting to understand how to model coupled land surface observations and hydrology using our new suite of PIHM codes. We have been working with Rutgers scientist Ying Fan to understand how to incorporate our new knowledge into earth systems models. With the new publication of carbon, water, nitrogen, and manganese budgets for Shale Hills, and the development of our full modelling capabilities, we are poised to provide real leadership for incorporating the relevant aspects of the CZ into earth systems models. This year, we also discovered that root density is approximately 2-fold higher on shale than sandstone while aboveground vegetation biomass on the two lithologies are similar -- this is a surprising result that points to how little we understand about the near surface, and how geological characteristics may be very important in determining what we observe above ground.

Significant Results Enumerated by Team

H1. Our analysis of Young Womans Creek (DiBiase et al., in revision) has resulted in three significant results that are of broad interest to understanding how stratigraphy influences landscape response to base level fall. First, our dense nested sampling strategy for detrital cosmogenic 10Be and lidar-based geologic mapping enabled us to robustly constrain the best-fit spatial pattern of erosion rates at Young Womans Creek using a novel 10Be flux modeling approach. Second, this pattern of erosion rates highlights how the presence of a resistant sandstone caprock sustains steep topography in underlying weak rocks, enabled by the armoring of hillslopes and channels by large clasts. Third, the resulting pattern of topography, stratigraphy, and erosion rates at Young Womans Creek shows how layered rocks lead to complex landscape response to base level fall, with implications for interpreting topography at the SSHCZO and more broadly.

H2. From our measurements of N cycling, we discovered that: Topographically convergent flow path locations had significantly higher surface N2O flux rates than nonconvergent flow path locations in the summer, but this was not true in other seasons. Overall, N2O fluxes were a large percentage (~19%) of total ecosystem N losses, and nearly twice as large as stream N export. Following decades of anthropogenic atmospheric deposition and additional N from shale weathering, watershed N inputs (~8 kgN ha-1 yr-1) are greater than outputs (~3.7 kgN ha-1 yr-1). We published two papers that summarize the nitrogen budget for Shale Hills.

H3. Root density was approximately 2-fold higher on shale than sandstone while aboveground vegetation biomass on the two lithologies were similar. Oaks tend to have deeper roots than maples on sandstone but not on shale. These findings contributed to a paper that has been accepted by the Vadose Zone Journal (Li Li et al. 2018). It will also contribute to a paper that is currently in progress that focuses on the importance of lithology on root distribution in co-occurring tree species (Szink et al. in prep). The overall advantages of a particular mycorrhizal type (AM or EM) and root type (e.g., thin vs. thick) shifts depending on nutrient heterogeneity in the forest ecosystem (Chen et al. 2018). Regardless of tree mycorrhizal type, roots enhance decomposition of coarse woody debris and decomposition is faster on shale than limestone.
H4. The H4 team summarized the dominant controls of macropore/preferential flow across various soils and landscapes and developed a framework of six key categories of controls to assess the susceptibility of various soils to preferential flow. We proposed a new method to offset the influence of the number of sensors per site on the detected occurrence frequency of preferential flow using real-time soil moisture data (this enhances the comparison study of preferential flow pattern across CZOs). We also proposed a new 3-D fill-and-spill conceptual model for the Shale Hills catchment. We compared the difference in preferential flow in Ground HOG transects between Shale Hills and Garner Run catchments. We tested the potential of integrating thermal imaging, repeated GPR scanning, and real-time monitoring to detect the occurrence of preferential flow at Shale Hills and Garner Run.

H5. The team has developed a new code, RT-Flux-PIHM, the first of its kind to simulate hydrogeochemistry with detailed multi-component reactive transport processes at the watershed scale. Two papers have been published about this advance in WRR: one on model development, the other on using the model to understand CQ dynamics.

H6. Expansion of monitoring sites along tributaries and the main step of Shaver’s Creek to quantify relationships between solute chemistry and catchment area lithology and land use. Masters student Callum Wayman will complete his thesis on this topic in Fall 2018.

H7. Both the coupled Flux-PIHM-BGC modeling system and the stand-alone BiomeBGC modeling have shown that, according to these modeling systems, the interactions between the nitrogen and water cycles is the dominant environmental control on spatial structure in carbon stocks in the Shale Hills watershed. Tree growth appears to be limited both by water and nitrogen availability, especially at the ridge tops. The stand-alone model underestimates the ridge-top to valley floor gradients in carbon, especially underestimated gradients in the soil carbon pool. The Flux-PIHM-BGC model is able to represent the spatial variations in terrestrial carbon processes, and the predictions of watershed average soil carbon and vegetation carbon compares well with observations.

For both modeling systems, the watershed average biomass pools (above and below ground carbon) and net ecosystem productivity are optimized in our model by using the observed carbon residence time (aboveground biomass divided by above ground net primary productivity), the observed nitrogen deposition rate, and tuning the soil carbon pool decomposition rate.

Research to determine the set of observations needed to simulate the spatial variability in carbon cycle stocks and fluxes with precision and accuracy is in progress, as is research to evaluate the robustness of the existing modeling systems with respect to a broader range of watershed observations, including spatial and temporal changes in soil respiration.

H8. Lithology controls the non-linearity of the discharge-storage relationship and threshold behavior of connectivity. The GR -- with sandy soils -- and a large riparian zone has a larger dynamic water storage and is less responsive to transient rainfall patterns. Direct model parameter transfer between catchments cannot reproduce monthly discharge until incorporating measured boulder distribution. The data from COSMOS shows a less flashy response due to its large footprint showing a better representativeness at the catchment scale; it also measures a higher soil moisture during the winter because of its representation of both liquid and frozen water. The measured FDR SM at the hillslope and the COSMOS SM are consistent with the Flux-PIHM simulated total water storage dynamics at the whole watershed, whereas the valley floor FDR shows more transient dynamics between influx from the upland and out fluxes (Q and ET). The dynamics of SM at the valley floor must be measured. The COSMOS records the large water content in the vegetation during the summer, which masks the response of soil moisture to transient precipitation events.

H9. The H9 team produced two papers describing the very important result that when shales weather, particles move in the subsurface. To date, no models of weathering and erosion include subsurface particle transport...however, we have shown that this type of transport is very important, especially for shales. This is a very significant finding because it could affect the interpretation of cosmogenic isotopes and our understanding of erosion.

Overall Key Outcomes or Other Achievements

Finally, we also published our paper from our tree workshop (Brantley, S.L., Eisenstat; D.M., Marshall; J.A., Godsey, S.E., Balogh-Brunstad; Z., Karwan; D.L., Papuga; S.A., Roering; J., Dawson; T.E., Evaristo; J., Chadwick; O., McDonnell; J.J. and Weathers, K.C., 2017. Reviews and syntheses: on the roles trees play in building and plumbing the critical zone. Biogeosciences, 14: 5115-5142, doi.org/10.5194/bg-14-5115-2017). This year also marked the year that the
majority of our seed grantees published papers on their seed projects using dollars given by NSF to Penn State. Specifically, we gave seed grants to outside scientists to work at our CZO and the majority of the group of scientists have now published papers from their work at the CZO.

The Principal Investigator was awarded the Urey Prize, the highest prize of the European Association of Geochemistry, for her lifetime of work, and she was cited for her work on critical zone science in particular.

Key Outcomes or Other Achievements Enumerated by Team

H1. The key outcomes of the H1 team include: 1) 2 papers published on periglacial controls on erosion rates (Denn et al., 2018; Del Vecchio et al., in press) and 1 paper submitted on rock strength controls on erosion rate and topography at Young Womans Creek (DiBiase et al., in revision); 2) Collaborations started in summer 2016 have continued with multiple shallow geophysics field campaigns consisting of teams of PSU graduate students and postdocs, undergraduate students from IUP and Dickinson, and faculty from all three institutions. Results from Garner Run have been synthesized in a manuscript that is in final preparation for submission in early fall 2018.

H2. We contributed soil pore chemistry data from Shale Hills and Garner Run to a team publication that used pore water cation concentrations to enhance understanding of concentration-discharge relationships (Hoagland et al. 2017). We published a paper on the N cycle at Shale Hills (Weitzman and Kaye 2018). Our graduate student (Caitlin Hodges) received a SAVI award for cross-CZO research. Our research revealed patterns of N cycling that are distinct from many other watersheds that have been extensively studied to understand N saturation; despite showing no other symptoms of N saturation, the watershed had high upland N2O losses, especially in convergent flow paths during summer. High upland N gas losses may be a mechanism that maintains N limitation to biota in the Shale Hills catchment. From our measurements of CO2/O2 we discovered that: At shale hills, most soils have a CO2/O2 concentration ratio that reflects aerobic respiration. However, in wet growing seasons and every spring, CO2/O2 deviates from the signal expected from aerobic respiration alone, suggesting other processes produce and consume soil CO2 and O2. At Garner Run, the CO2/O2 ratios for most of the year reflect some level of anaerobic respiration, which is surprising because O2 concentrations remain > 18% most of the time. At Garner Run, the signal of anaerobic respiration even when O2 concentrations are high could result from microsite heterogeneity in soils. That is, while soil macropores may reflect high bulk O2 concentrations, micropores may be anaerobic leading to a shift in the CO2/O2 ratio.

H4. The team published 2 papers related to soil moisture in the Shale Hills catchment (Guo and Lin, 2018, Guo et al., 2018) and contributed to three other published articles.

H5. The team has a paper published on regolith development on black shale (Heidari et al., 2017, GCA) as part of the SSHCZO's shale transect, and two papers on CQ relationships in Shale Hills published in WRR. In addition, the student on this project, Dacheng Xiao, presented his hillslope modeling work at AGU 2017, and won the AGU Fall meeting Outstanding Student Paper Award.

H7. The team developed a new coupled modeling system, Flux-PIHM-BGC, available for research. It includes a coupled simulation of groundwater hydrology, biogeochemistry, and surface energy balance. A paper on Flux-PIHM-BGC development and testing was published in Ecological Modelling. This new coupled model is being used to explore our observations about the importance of nitrogen in controlling carbon stocks in the watershed. The eddy covariance flux data record from Shale Hills is continually updated as observations are collected. The Cole Farm flux record is now being processed. Two papers on simulating carbon in complex terrain and model parameters sensitivity analysis are in preparation.

H8. The H8 team developed a version of Flux-PIHM with deep groundwater representation and implemented the model at Shale Hills. The team also produced Flux-PIHM input for Cole Farm that can be used for land surface and hydrologic studies.

H9. Pam Sullivan is now an Assistant Professor at Univ of Kansas and she is working with us to use the reactive transport code WITCH to earthcast the future of weathering in the context of climate change. We are working to publish a paper on this ...it is in late stage review...where we discuss how aspect can be used as a way to test the effect of climate on weathering. We also outline how to earthcast weathering.

What opportunities for training and professional development has the project provided?

The CZO is used by several classes at Penn State and is visited by faculty and students from several local universities (e.g., Kent State Univ., Lehigh Univ., Univ of Pennsylvania, Indiana Univ of Pennsylvania, Dickinson College, Temple Univ., Rutgers Univ.) for research and teaching.
The CZO was also home base for the NSF funded GEOPATHS field experience (2-week multi-institutional near-surface geophysics applied field experience) focused on addressing ongoing geophysical questions in critical zone science. Seventeen students from Rutgers/Temple and 4 peer mentors participated in this initial year and the project is funded for two additional years. Faculty collaborations between outside team members have grown from this project, contributing to the ideas outlined and developed in the two articles accepted to the Vadose Zone Journal Special Edition: Hydrological Observatories. The effort is focused on students from under-represented groups to expose them to geophysical research and field research.

Training and Professional Development within Each Team is Listed Below

H1. Graduate student P. Silverhart started her MS and graduate student J. Del Vecchio started her PhD, both at Penn State with R. DiBiase. Graduate student P. Silverhart was mentored in geomorphic mapping using fieldwork, GIS and lidar analysis, and in the interpretation and preparation of soil samples for 137Cs analysis. In spring 2018, J. Del Vecchio mentored one undergraduate researcher through the NASA Pennsylvania Space Grant Women in Science and Engineering Research (WISER) program.

H2. In fall 2017 the H2 team recruited two new graduate students to the hypothesis. Caitlin Hodges is a PhD student in soil science and as noted above, she received a SAVI grant in 2018 for cross CZO research. Ben Dillner is an MS student and he is conducting research on pits and mounds of windthrown trees. Both are in the department of Ecosystem Science and Management.

H3. The H3 team provided opportunity for undergraduate (Molly Pash) to work on a study entitled "Effects of topography on soil moisture and belowground carbon processes". Rondy Malik went on a sponsored post-doctoral visit at The University of Kansas, courtesy of Joy K. Ward and James D. Bever at the Department of Ecology and Evolutionary Biology.

H4. Five visiting scholars were trained to use GPR, EMI, TDR, and infiltrometers at the Shale Hills and Garner Run catchments.

H5. The team graduated a PhD student, Chen Bao, who is now working in industry. Another student, Dacheng Xiao, is working on the hillslope model. Both students have benefitted from monthly SSHCZO seminar and cross-disciplinary discussions. A previous student mentored by this team, Peyman Heidari, is now a professor at Missouri Univ. of Science and Technology.

H6. A graduate student, Beth Hoagland, co-advised by Russo and Brantley, had her first lead author manuscript published in *Water Resources Research* covering work on C-Q at the sandstone catchment. A second graduate student, also advised by Brantley and co-mentored by Russo (Callum Wayman), has collaborated across Colleges within Penn State to refine his research on modeling solute transport, and has presented results at a national conference. A third graduate student (Virginia Marcon) also worked on one of the subcatchments of the CZO to understand weathering and water-rock interaction.

H7. Doctoral student Yuting He participated in CZO meetings and workshops, and international and national-scale research conferences, and made significant progress toward completing her dissertation. One paper is nearly ready to submit, a second is in draft form, and a third body of research work is well underway. Her doctoral committee includes three members of the CZO team (Davis, Eissenstat, Shi), a global climate scientist, and a watershed hydrologist.

H8. A graduate student Dacheng Xiao (co-advised by L. Li and Y. Shi) was trained to systematically analyze the watershed hydrological dynamics and synthesize field observations for hydrologic modeling. Xiao also was trained in scientific writing. Graduate student Callum Wayman was trained to use PIHMqgis to prepare input files for PIHM. Undergraduate Mike Forgeng (in Geosciences) is writing a senior thesis while working at Cole Farm and the mainstem of Shavers Creek. Undergraduate Nathan Carpenter completed a senior thesis in Geosciences on soils in Cole Farm.

H9. Graduate student (and now postdoc) Xin Gu helped collect data and write the paper that was published in Earth and Planetary Science Letters on subsurface particle transport. Postdoc Hyojin Kim wrote that paper. She now works in Denmark in a permanent position. Pam Sullivan, now an Assistant Professor at Univ of KS, is writing the earthcasting paper. She has had the opportunity to work with Yves Godderis. Godderis is the writer of the WITCH code and he works for CNRS in Toulouse France. Her work using WITCH was facilitated over the years by several trips to France to work with Yves, including trips funded by the CZO.

* How have the results been disseminated to communities of interest?

The entire CZO team helped run the Arlington meeting -- National Critical Zone Science Workshop: Current Advances & Future Opportunities -- and we helped publish the paper in Earth Surface Dynamics describing a proposed design for a CZO network. Finally, we also published our paper from our tree workshop. Also during this year, we completed publication of the fourth paper that was written by one of our seed grantees. Specifically, we gave seed grants to outside scientists to work at our CZO and each group of scientists have now published papers from their work at the CZO. We gave each of those groups funding from our NSF funds.

The team, and especially Program Coordinator Jennifer Williams, continued to work with the TeenShale Network, which involves high school students learning about shale gas. Presentations were given to students at the State College Area High School. Three high school teachers are actively involved and the effort is now providing a credit for a class at the high school. The effort resulted in a publication:
The CZO team is working with the Shavers Creek Discovery Center to set up their new museum using many principles from critical zone science.

The Principal Investigator was invited to discuss CZOs as an approach for investigating the environment at the 1) 2017 Gordon Conference on Catchment Science: Interactions of Hydrology, Biology & Geochemistry, 2) at the National Critical Zone Science Workshop: Current Advances & Future Opportunities in Arlington, 3) at a panel entitled, Using the Critical Zone Observatory Network to Put Geology into Environmental Science, at the American Geophysical Union, 4) as a CZO representative at the DOE Collaborative Design Challenge workshop in Bethesda, Md, April 2017.

The Principal Investigator also received the Urey Prize, the highest price of the European Assoc of Geochemistry and gave an invited talk, Exploring subsurface geochemical landscapes in the critical zone, at the 2017 Goldschmidt conference. This talk included discussion of a new paradigm (associating subsurface water flow with reaction fronts), and highlighted work at 5 CZOs.

Dissemination activities from the hypothesis teams are summarized below.

H1. Key results of the geomorphic mapping and cosmogenic dating at Garner Run were presented at AGU in fall 2017 by J. Del Vecchio. J. Del Vecchio continued work with the Shavers Creek Environmental Center to integrate CZO research with public science exhibits. In October 2017, The 82nd Field Conference of Pennsylvania Geologists was held in State College, PA, and focused heavily on work done as part of the CZO. Over 200 participants spanning academia, government, and industry visited the CZO field site.

H2. The H2 team leader (J. Kaye) has been participating in the Soil Microbiology cross CZO Working group to disseminate and learn CZO approaches. Team members gave several talks on campus and at other venues. Two publications on this hypothesis disseminated results to the scientific community. In addition, we contributed to two team publications in the Vadose Zone Journal that disseminated general results to the scientific community. We contributed to two tours of Shale Hills, including the PA Geologists field tour and a tour for an undergraduate "Forest Soils" class. We hosted Kathleen Lohse from the Reynolds Creek CZO, including a tour of all three of our research catchments.

H3. Work on vertical root distribution was disseminated at the AGU Annual Fall Meeting (2017) and the effects of roots on wood decomposition at the Annual Meeting of the American Society of Botany (Botany 2018). Work at the Shale Hills CZO was also disseminated at a DOE PI meeting associated with a DOE grant at the site. Work presented included how topography can strongly affect aboveground biomass partitioning without strongly affecting root length partitioning. We also presented on the coupling of Biome BGC with PHIM. Work on root and mycorrhizal fungal biology was disseminated at meetings for the general public and Extension agents (e.g. Private Land Owners). Work on tree growth was presented to REU students associated with Prof. Erica Smithwick’s project in the summer.

H4. H4 produced 2 publications (European Journal of Soil Science, Advances in Agronomy), contributed to 1 publications (Vadose Zone Journal), and 3 presentations (AGU Fall Meeting (Qicheng Tang, Ismaiel Szink and Li Guo)

H5. The team has been actively advocating the use of models to understand complex systems and general principles across CZOs. Specifically, i) The team, together with Russo and Hoagland (H6 team), is actively involved in a Cross-CZO C-Q relationship workshop; ii) Li has developed an online reactive transport modeling (RTM) course that has been and will be used to teach graduate students across CZOs. The online course has been taught three times in Spring 2016, 2017, and 2018. With further refinement, Li plans to make all course materials public in 2019 so that anyone who is interested in using RTM can access it without the limit of time and space. To the best of the team’s knowledge, this is the first RTM online course, which has the potential for teaching the next generation of scientist RTM tools for CZO work; iii) Li also led a forward- looking manuscript "Expanding the role of reactive transport models in Critical Zone Processes", which was published in 2017. This manuscript comes out of an RTM workshop (together with Kate Maher and Alexis Navarre-Sitchler) in 2014. iv) Li organized an AGU session "Modeling the Critical Zone: Integrating processes and data across disciplines and across scales" together with Harry Vereecken (Bonn University, Germany), Praveen Kumar (UIUC, IML CZO), and Arora Bhavna (LBNL, East River Watershed) in December 2017.

H6. A paper was published in Water Resources Research in the C-Q special issue comparing the apparent controls on C-Q behavior by the hyporheic zone and hillslopes in the sandstone and shale catchments, respectively. Graduate student, Callum Wayman, presented his research on modeling solute transport across watershed scales at the American Geophysical Union fall meeting, 2017, and has submitted an abstract to present his final results at the same conference in fall 2018.

H7. The team has presented research results at the CZO All-Hands meeting and as contributions to the team colloquium series. Doctoral student He presented a talk in the CZO_LTER_NEON_ISMC cross network workshop. Doctoral student He presented a poster at the 5th iLEAPS science conference held in Oxford, UK and Gordon Research Conference on catchment science. Two manuscripts will be submitted shortly. Shi presented a talk at 2017 AGU fall meeting on Flux-PIHM-BGC development and evaluation at Shale Hills. A manuscript on Flux-PIHM-BGC development and test at Shale Hills was published in Ecological Modelling.

H8. Team members gave talks on campus and at other venues (e.g. 2017 AGU Fall Meeting). A manuscript titled "Contrasting water storage and connectivity in first-order catchments of differing lithology and topography" have been submitted to Water Resources Research.

H9. Two papers have been published on particle transport at Shale Hills and one paper is under review about earthcasting.
* What do you plan to do during the next reporting period to accomplish the goals?

Overall, the team is packaging up the work on upscaling and modelling the CZ into papers for the community. We are also refining our ideas as to how to upscale models from small Shale Hills-scale to large Shavers Creek-scale.

H1. Roman DiBiase is leading a group paper on shallow geophysical surveying in Garner Run, which is in final preparation for submission in early fall 2018. Soil samples collected from Cole Farm will be analyzed for 137Cs in fall/winter 2018/2019 by graduate student P. Silverhart. Also at Cole Farm, a soil coring campaign in the 2-4 m thick valley fill is planned for fall 2018, with 137Cs and radiocarbon analysis of deposits planned for winter 2018/2019. These data will help constrain the timing of valley aggradation at Cole Farm and help assess whether this aggradation is due to periglacial climate forcing or recent anthropogenic influence. At Bear Meadows, a preliminary core collected in summer 2018 will be analyzed for cosmogenic 10Be and 26Al by J. Del Vecchio, P. Bierman, and R. DiBiase, as part of a seed project funded by the Penn State Institute of Energy and the Environment.

H2. We have now accumulated a significant dataset from several landscape positions and three lithologies that show variation in CO2/O2 ratios, and those data must be analyzed. We have used data from two of the catchments (sandstone and shale forests) to develop a hypothesis about the role of Fe and Mn in the C cycle, and our graduate student (Caitlin Hodges) received SAVI funding to support the testing of this hypothesis. She has already collected samples from Shale Hills and Calhoun and in the coming year she will complete analyses. We expect to publish one paper on CO2/O2 ratios and a collaborative paper on the P cycle at Garner Run. These results point to two testable hypotheses: 1) At shale hills, microbial reduction of Fe and Mn may cause shifts in the CO2/O2 signal in the late growing season and those metals may stay reduced over winter. Then in spring, as soils dry, Fe and Mn may be oxidized again (abiotically) to repeat the cycle. 2) At Garner Run, the signal of anaerobic respiration even when O2 concentrations are high could result from microsite heterogeneity in soils. That is, while soil macropores may reflect high bulk O2 concentrations, micropores may be anaerobic leading to a shift in the CO2/O2 ratio.

H3. The team will publish work on tree species composition of roots in relation to soil depth along the catenas in sandstone and shale and submit at least two papers associated with the influence of topography on root respiration and root length density. They will help the broader research efforts by continuing to monitor soil moisture, sap flux, litter fall, LAI and tree diameter growth. The team will also contribute one paper in collaboration with other hypothesis groups on the soil-plant-atmosphere continuum in regards to soil moisture, sap flux and eddy covariance measures of evapotranspiration. They will also initiate studies to examine the influence of lithology, tree species and soil depth on root exudation and factors controlling wood decomposition. The tree team is starting to work with the model-development team to create a root-water module for the PIHM suite of models. Provide estimates of aboveground carbon storage on a mass per unit area on sandstone and shale that will permit modeling the sensitivity of forest growth investigating to annual variation in temperature and precipitation. Microbial metagenomic analysis will be used to unravel factors that help govern home-field advantages (HFA) of coarse wood debris decomposition. This includes characterizing microbial communities in woody plant tissue, as well as home and away soil communities.

H4. The team will also test the microtopography control on preferential flow by utilizing the new soil moisture sensors. We will continue to test the use of COSMOS as a way to measure soil moisture, and in this endeavor we are working with the US Army who is interested in this technique. (Predicting soil moisture is important for the Army in terms of predicting where mud forms in undeveloped areas).

H5. The team will continue model development of regolith formation. 1D ridgetop simulations will be run to model regolith formation at Shale Hills, and if time permits, for the sandstone and calcareous shale lithologies. Hillslope catena models will be developed for simulation of shale, and if time permits, for the sandstone and calcareous shale lithologies.

H6. The team will support monitoring of GroundHOG instruments at the agricultural site, which will provide necessary pore water and soil moisture data for modeling fluid and solute transport within the catchment. The current graduate student working on H6 will develop conceptual and quantitative hydrologic models for the agricultural site, and begin using field data and remote sensing products to develop a scaled up model characterizing C-Q behavior in the greater Shaver's Creek watershed. Callum Wayman will publish a manuscript on his work quantifying stream solute chemistry as a function of lithology and land use. The team will also assist the cross-CZO postdoctoral researcher conducting hydrologic studies across the network. Virginia Marcon will publish a paper on the water-rock interaction in the Garner Run subcatchment: she will emphasize the importance of dust input into watersheds and how shale and quartzite are impacted differently by such dust inputs.

H7. Research work will be expanded to include further model-data comparison (nitrogen cycle, soil respiration, carbon stock uncertainty assessment) and, if warranted, additional field data collection to refine our understanding of the carbon-water-nutrient interactions within the Shale Hills watershed. We will use spatially distributed soil respiration measurements to evaluate further BiomeBGCs parameterizations of the soil carbon cycle across the watershed. We will attempt to evaluate the nitrogen cycle processes suggested by our coupled modeling system with field nitrogen cycle observations. We will complete a model sensitivity study that will prioritize observations needed to simulate the watershed carbon and nitrogen cycles at Shale Hills. This work moves us towards the objective of a data assimilation system for coupled watershed hydrology and biogeochemistry. We are expecting to perform cross-catchment tests of this modeling system within the SSHCZO, and cross-CZO Flux-PIHM-BGC tests to evaluate the robustness of this modeling system.

H8. Based on the understanding of water, energy, sediment, and solute fluxes at Shale Hills and Garner Run, the strategy of simulating Shaver's Creek with less intensive measurements will be evaluated. The Flux-PIHM model with deep groundwater will be tested at Cole Farm.
H9. The team plans to publish the earthcasting paper (Pam Sullivan, first author).

Products

Books

Book Chapters

Inventions

Journals or Juried Conference Papers

Licenses

Other Conference Presentations / Papers

Acknowledgement of Federal Support = Yes

American Geophysical Union Annual Fall Meeting. New Orleans, LA USA. Status = PUBLISHED; Acknowledgement of Federal Support = Yes

Wayman, Callum Richard, Tess A Russo, Li Li, Brandon Forsythe, Beth Hoagland (2017). Qualitatively Modeling solute fate and transport across scales in an agricultural catchment with diverse lithology. American Geophysical Union Annual Fall Conference. New Orleans, LA USA. Status = PUBLISHED; Acknowledgement of Federal Support = Yes

Contrasting Soils in the Shale Hills CZO. American Geophysical Union Annual Fall Meeting. New Orleans, LA USA. Status = PUBLISHED; Acknowledgement of Federal Support = Yes

Kim, Hyojin, Xin Gu, Susan Brantley (2017). **Subsurface particle loss during shale weathering can alter soil and rock chemistry.** American Geophysical Union Annual Fall Meeting. New Orleans, LA USA. Status = PUBLISHED; Acknowledgement of Federal Support = Yes

White, Timothy S., Adam Wymore, Ashlee Laura Denton Dere, James C Washburne, Adam Hoffman, Martha Conklin (2017). **Teaching climate science within the transdisciplinary framework of Critical Zone science (Invited).** American Geophysical Union Annual Fall Meeting. New Orleans, LA USA. Status = PUBLISHED; Acknowledgement of Federal Support = Yes

Marcon, Virginia, Xin Gu, Susan L Brantley (2017). **The Evolution of Porosity During Weathering of Serpentinite and the Creation of Thin Regolith in the Appalachian Piedmont.** American Geophysical Union Annual Fall Meeting. New Orleans, LA USA. Status = PUBLISHED; Acknowledgement of Federal Support = Yes

Brantley, S.L. (2017). **Toward a conceptual model relating subsurface biogeochemical landscapes to water flow paths in hills.** Buckley Lecture, University of Illinois. Urbana-Champaign, IL, November 1-3. Status = PUBLISHED; Acknowledgement of Federal Support = Yes

Xiao, Dacheng, Yuning Shi, Beth Hoagland, Joanmarie Del Vecchio, Tess A Russo, Roman A DiBiase, Li Li (2017). **Understanding controls of hydrologic processes across two headwater monolithological catchments using model-data synthesis.** American Geophysical Union Annual Fall Meeting. New Orleans, LA USA. Status = PUBLISHED; Acknowledgement of Federal Support = Yes

Xiao, Dacheng, Susan Brantley, Li Li (2017). **Understanding the hydrologic and geochemical control of regolith formation on shale in a hilly landscape.** American Geophysical Union Annual Fall Meeting. New Orleans, LA USA. Status = PUBLISHED; Acknowledgement of Federal Support = Yes

Shi, Yuning, David M Eissenstat, Yuting He, Kenneth J Davis (2017). **Using a spatially-distributed hydrologic biogeochemistry model with nitrogen transport to study the spatial variation of carbon stocks and fluxes in a Critical Zone Observatory.** American Geophysical Union Annual Fall Meeting. New Orleans, LA USA. Status = PUBLISHED; Acknowledgement of Federal Support = Yes

Brantley, Susan L. (2017). **Using the Critical Zone Observatory Network to Put Geology into Environmental Science (Invited).** American Geophysical Union Annual Fall Meeting. New Orleans, LA USA. Status = PUBLISHED; Acknowledgement of Federal Support = Yes

Other Products

Educational aids or Curricula.

Online reactive transport modeling course: https://www.e-education.psu.edu/png550/node/829

2017 AGU Session - EP21H.

Brantley was Organizer and Chair (with Carl Steefel, DOE), Oral Session EP21H: Shale: From Fracking to Forest I, American Geophysical Union Fall Meeting, New Orleans, LA, Dec. 11-15, 2017

2017 AGU Session - EP3C.

Brantley was Organizer and Chair (with Carl Steefel, DOE), Poster Session EP3C: Shale: From Fracking to Forest II, American Geophysical Union Fall Meeting, New Orleans, LA, Dec. 11-15, 2017

2017 AGU Session - H43S.

Li Li, Organizer and Chair (with Harry Vereecken, Praveen Kumar, Bhavna Arora) Oral Session - H43S: Modeling the Critical Zone: Integrating Processes and Data Across Disciplines and Scales I.

American Geophysical Union Fall Meeting, New Orleans, LA, Dec. 11-15, 2017

2017 AGU Session - TH25H.

Roman A DiBiase - Organizer and Primary Contact, TownHall Session TH25H: The National Center for Airborne Laser Mapping (NCALM): Future opportunities and community needs in high-resolution topography

American Geophysical Union Fall Meeting, New Orleans, LA, Dec. 11-15, 2017

2017 AGU Session - TH43C.

Timothy S White, Organizer and Primary Contact, TownHall Session - TH43C: Critical Zone Observatories: Platforms for Collaborative Science Presenters - William H McDowell and Susan L Brantley

American Geophysical Union Fall Meeting, New Orleans, LA, Dec. 11-15, 2017

2017 AGU Session - U11A.

Brantley was Organizer and Chair (with Carl Steefel, DOE), Oral Session U11A: Shale Across All Scales, American Geophysical Union Fall Meeting, New Orleans, LA, Dec. 11-15, 2017

Other Publications

Patents

Technologies or Techniques

Flux-PIHM-BGC is now included in the open source MM-PIHM project at https://github.com/PSUmodeling/MM-PIHM.

Thesis/Dissertations

Denn, A.. DETECTING LANDSCAPE RESPONSE TO PERTURBATIONS BY CLIMATE AND BASE LEVEL IN CENTRAL PENNSYLVANIA USING IN-SITU 10Be AND 26Al. (2017). The University of Vermont. Acknowledgement of Federal Support = Yes

Weitzman, Julie. VARIATION IN SOIL NITROGEN RETENTION ACROSS LAND USES, LANDSCAPES, AND LANDFORMS IN CENTRAL PENNSYLVANIA. (2016). The Pennsylvania State University. Acknowledgement of Federal Support = Yes

Websites

Participants/Organizations

What individuals have worked on the project?

<table>
<thead>
<tr>
<th>Name</th>
<th>Most Senior Project Role</th>
<th>Nearest Person Month Worked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brantley, Susan</td>
<td>PD/PI</td>
<td>2</td>
</tr>
<tr>
<td>Davis, Kenneth</td>
<td>Co PD/PI</td>
<td>1</td>
</tr>
<tr>
<td>Eissenstat, David</td>
<td>Co PD/PI</td>
<td>1</td>
</tr>
<tr>
<td>Li, Li</td>
<td>Co PD/PI</td>
<td>3</td>
</tr>
<tr>
<td>Bern, Carleton</td>
<td>Co-Investigator</td>
<td>1</td>
</tr>
<tr>
<td>Name</td>
<td>Role</td>
<td>Count</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>Bierman, Paul</td>
<td>Co-Investigator</td>
<td>1</td>
</tr>
<tr>
<td>Brubaker, Kristen</td>
<td>Co-Investigator</td>
<td>1</td>
</tr>
<tr>
<td>Comas, Xavier</td>
<td>Co-Investigator</td>
<td>1</td>
</tr>
<tr>
<td>Dere, Ashlee</td>
<td>Co-Investigator</td>
<td>1</td>
</tr>
<tr>
<td>DiBiase, Roman</td>
<td>Co-Investigator</td>
<td>2</td>
</tr>
<tr>
<td>Hasenmueller, Elizabeth</td>
<td>Co-Investigator</td>
<td>1</td>
</tr>
<tr>
<td>Hayes, Jorden</td>
<td>Co-Investigator</td>
<td>1</td>
</tr>
<tr>
<td>Karwan, Diana</td>
<td>Co-Investigator</td>
<td>0</td>
</tr>
<tr>
<td>Kaye, Margot</td>
<td>Co-Investigator</td>
<td>1</td>
</tr>
<tr>
<td>Kaye, Jason</td>
<td>Co-Investigator</td>
<td>1</td>
</tr>
<tr>
<td>Keating, Kristina</td>
<td>Co-Investigator</td>
<td>1</td>
</tr>
<tr>
<td>Kirby, Eric</td>
<td>Co-Investigator</td>
<td>1</td>
</tr>
<tr>
<td>Lin, Henry</td>
<td>Co-Investigator</td>
<td>1</td>
</tr>
<tr>
<td>Liu, Wenjing</td>
<td>Co-Investigator</td>
<td>1</td>
</tr>
<tr>
<td>Long, Robert</td>
<td>Co-Investigator</td>
<td>1</td>
</tr>
<tr>
<td>Mount, Greg</td>
<td>Co-Investigator</td>
<td>1</td>
</tr>
<tr>
<td>Nyquist, Jon</td>
<td>Co-Investigator</td>
<td>1</td>
</tr>
<tr>
<td>Perdrial, Julia</td>
<td>Co-Investigator</td>
<td>1</td>
</tr>
<tr>
<td>Pett Ridge, Julie</td>
<td>Co-Investigator</td>
<td>1</td>
</tr>
<tr>
<td>Richter, Dan</td>
<td>Co-Investigator</td>
<td>1</td>
</tr>
<tr>
<td>Shi, Yuning</td>
<td>Co-Investigator</td>
<td>1</td>
</tr>
<tr>
<td>Singha, Kamini</td>
<td>Co-Investigator</td>
<td>1</td>
</tr>
<tr>
<td>Slater, Lee</td>
<td>Co-Investigator</td>
<td>1</td>
</tr>
<tr>
<td>Stottlemyer, Aaron</td>
<td>Co-Investigator</td>
<td>1</td>
</tr>
<tr>
<td>Sullivan, Pamela</td>
<td>Co-Investigator</td>
<td>1</td>
</tr>
<tr>
<td>West, Nicole</td>
<td>Co-Investigator</td>
<td>1</td>
</tr>
<tr>
<td>Caffee, Marc Caffee</td>
<td>Faculty (PRIME lab, Purdue Univ)</td>
<td>1</td>
</tr>
<tr>
<td>Duncan, Jonathan</td>
<td>Faculty</td>
<td>1</td>
</tr>
<tr>
<td>Clarke, Brian</td>
<td>Postdoctoral (scholar, fellow or other postdoctoral position)</td>
<td>0</td>
</tr>
<tr>
<td>Gu, Xin</td>
<td>Postdoctoral (scholar, fellow or other postdoctoral position)</td>
<td>1</td>
</tr>
<tr>
<td>Adams, Tom</td>
<td>Technician</td>
<td>0</td>
</tr>
<tr>
<td>Guo, Li</td>
<td>Staff Scientist (doctoral level)</td>
<td>2</td>
</tr>
<tr>
<td>Hidy, Alan</td>
<td>Staff Scientist (doctoral level)</td>
<td>1</td>
</tr>
<tr>
<td>Zimmerman, Susan</td>
<td>Staff Scientist (doctoral level)</td>
<td>1</td>
</tr>
<tr>
<td>Bao, Chen</td>
<td>Graduate Student (research assistant)</td>
<td>0</td>
</tr>
<tr>
<td>Name</td>
<td>Role</td>
<td>Worked</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Chen, Weile</td>
<td>Graduate Student (research assistant)</td>
<td>1</td>
</tr>
<tr>
<td>Del Vecchio, Joanmarie</td>
<td>Graduate Student (research assistant)</td>
<td>5</td>
</tr>
<tr>
<td>Denn, Alison</td>
<td>Graduate Student (research assistant)</td>
<td>1</td>
</tr>
<tr>
<td>Dillner, Benjamin</td>
<td>Graduate Student (research assistant)</td>
<td>12</td>
</tr>
<tr>
<td>Douglas, Baldwin</td>
<td>Graduate Student (research assistant)</td>
<td>0</td>
</tr>
<tr>
<td>He, Yuting</td>
<td>Graduate Student (research assistant)</td>
<td>12</td>
</tr>
<tr>
<td>Heidari, Peyman</td>
<td>Graduate Student (research assistant)</td>
<td>0</td>
</tr>
<tr>
<td>Hill, Lillian</td>
<td>Graduate Student (research assistant)</td>
<td>0</td>
</tr>
<tr>
<td>Hoagland, Beth</td>
<td>Graduate Student (research assistant)</td>
<td>1</td>
</tr>
<tr>
<td>Hodges, Caitlin</td>
<td>Graduate Student (research assistant)</td>
<td>12</td>
</tr>
<tr>
<td>Malik, Rondy</td>
<td>Graduate Student (research assistant)</td>
<td>12</td>
</tr>
<tr>
<td>Orr, Alexandra</td>
<td>Graduate Student (research assistant)</td>
<td>0</td>
</tr>
<tr>
<td>Osterman, Gordon</td>
<td>Graduate Student (research assistant)</td>
<td>0</td>
</tr>
<tr>
<td>Primka, Edward</td>
<td>Graduate Student (research assistant)</td>
<td>1</td>
</tr>
<tr>
<td>Reed, Warren</td>
<td>Graduate Student (research assistant)</td>
<td>12</td>
</tr>
<tr>
<td>Silverhart, Perri</td>
<td>Graduate Student (research assistant)</td>
<td>6</td>
</tr>
<tr>
<td>Szink, Ismael</td>
<td>Graduate Student (research assistant)</td>
<td>12</td>
</tr>
<tr>
<td>Tang, Qicheng</td>
<td>Graduate Student (research assistant)</td>
<td>12</td>
</tr>
<tr>
<td>Wade, Anna</td>
<td>Graduate Student (research assistant)</td>
<td>0</td>
</tr>
<tr>
<td>Wayman, Callun</td>
<td>Graduate Student (research assistant)</td>
<td>12</td>
</tr>
<tr>
<td>Weitzman, Julie</td>
<td>Graduate Student (research assistant)</td>
<td>0</td>
</tr>
<tr>
<td>Xiao, Dacheng</td>
<td>Graduate Student (research assistant)</td>
<td>12</td>
</tr>
<tr>
<td>Zarif, Fardous</td>
<td>Graduate Student (research assistant)</td>
<td>0</td>
</tr>
<tr>
<td>Forsythe, Brandon</td>
<td>Non-Student Research Assistant</td>
<td>12</td>
</tr>
<tr>
<td>Harper, Jeremy</td>
<td>Non-Student Research Assistant</td>
<td>6</td>
</tr>
<tr>
<td>Shaphic, Dan</td>
<td>Non-Student Research Assistant</td>
<td>9</td>
</tr>
<tr>
<td>Williams, Jennifer</td>
<td>Non-Student Research Assistant</td>
<td>12</td>
</tr>
<tr>
<td>Carpenter, Nathan</td>
<td>Undergraduate Student</td>
<td>1</td>
</tr>
<tr>
<td>Forgeng, Michael</td>
<td>Undergraduate Student</td>
<td>1</td>
</tr>
<tr>
<td>Potter, Joshua</td>
<td>Consultant</td>
<td>1</td>
</tr>
</tbody>
</table>

Full details of individuals who have worked on the project:

Susan L Brantley
Email: brantley@essc.psu.edu
Most Senior Project Role: PD/PI
Nearest Person Month Worked: 2
<table>
<thead>
<tr>
<th>Contribution to the Project: Principal investigator</th>
<th>Principal investigator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funding Support: NSF</td>
<td>NSF</td>
</tr>
<tr>
<td>International Collaboration: No</td>
<td>No</td>
</tr>
<tr>
<td>International Travel: Yes, Germany - 0 years, 0 months, 7 days</td>
<td>Yes, Germany - 0 years, 0 months, 7 days</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kenneth J Davis</th>
<th>Email: kjd10@psu.edu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most Senior Project Role: Co PD/PI</td>
<td>Co PD/PI</td>
</tr>
<tr>
<td>Nearest Person Month Worked: 1</td>
<td>1</td>
</tr>
<tr>
<td>Contribution to the Project: investigator contributing to H7</td>
<td>investigator contributing to H7</td>
</tr>
<tr>
<td>Funding Support: CZO and Penn State</td>
<td>CZO and Penn State</td>
</tr>
<tr>
<td>International Collaboration: No</td>
<td>No</td>
</tr>
<tr>
<td>International Travel: No</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>David M Eissenstat</th>
<th>Email: dme9@psu.edu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most Senior Project Role: Co PD/PI</td>
<td>Co PD/PI</td>
</tr>
<tr>
<td>Nearest Person Month Worked: 1</td>
<td>1</td>
</tr>
<tr>
<td>Contribution to the Project: lead investigator for H3</td>
<td>lead investigator for H3</td>
</tr>
<tr>
<td>Funding Support: Penn State, CZO, DOE</td>
<td>Penn State, CZO, DOE</td>
</tr>
<tr>
<td>International Collaboration: No</td>
<td>No</td>
</tr>
<tr>
<td>International Travel: No</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Li Li</th>
<th>Email: lili@engr.psu.edu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most Senior Project Role: Co PD/PI</td>
<td>Co PD/PI</td>
</tr>
<tr>
<td>Nearest Person Month Worked: 3</td>
<td>3</td>
</tr>
<tr>
<td>Contribution to the Project: lead investigator for H5</td>
<td>lead investigator for H5</td>
</tr>
<tr>
<td>Funding Support: Penn State University</td>
<td>Penn State University</td>
</tr>
<tr>
<td>International Collaboration: No</td>
<td>No</td>
</tr>
<tr>
<td>International Travel: No</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Carleton Bern</th>
<th>Email: cbern@usgs.gov</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most Senior Project Role: Co-Investigator</td>
<td>Co-Investigator</td>
</tr>
<tr>
<td>Nearest Person Month Worked: 1</td>
<td>1</td>
</tr>
<tr>
<td>Contribution to the Project: Advancing the understanding of colloidal transport</td>
<td>Advancing the understanding of colloidal transport</td>
</tr>
<tr>
<td>Funding Support: USGS</td>
<td>USGS</td>
</tr>
<tr>
<td>International Collaboration: No</td>
<td>No</td>
</tr>
<tr>
<td>International Travel: No</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paul Bierman</th>
<th>Email: pbierman@uvm.edu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most Senior Project Role: Co-Investigator</td>
<td>Co-Investigator</td>
</tr>
<tr>
<td>Nearest Person Month Worked: 1</td>
<td>1</td>
</tr>
<tr>
<td>Contribution to the Project: Geomorphologist/Geochemist - works on Hypothesis 1</td>
<td>Geomorphologist/Geochemist - works on Hypothesis 1</td>
</tr>
<tr>
<td>Name</td>
<td>Email</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Kristen Brubaker</td>
<td>brubaker@hws.edu</td>
</tr>
<tr>
<td>Xavier Comas</td>
<td>xcomas@fau.edu</td>
</tr>
<tr>
<td>Ashlee Dere</td>
<td>alid271@psu.edu</td>
</tr>
<tr>
<td>Roman DiBiase</td>
<td>rad22@psu.edu</td>
</tr>
<tr>
<td>Elizabeth Hasenmueller</td>
<td>hasenmuellerea@slu.edu</td>
</tr>
<tr>
<td>Name</td>
<td>Email</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Jorden Hayes</td>
<td>hayesjo@dickinson.edu</td>
</tr>
<tr>
<td>Diana Karwan</td>
<td>dkarwan@umn.edu</td>
</tr>
<tr>
<td>Margot Kaye</td>
<td>mwk12@psu.edu</td>
</tr>
<tr>
<td>Jason Kaye</td>
<td>jpk12@psu.edu</td>
</tr>
<tr>
<td>Kristina Keating</td>
<td>kmkeat@andromeda.rutgers.edu</td>
</tr>
</tbody>
</table>
Eric Kirby
Email: eric.kirby@geo.oregonstate.edu
Most Senior Project Role: Co-Investigator
Nearest Person Month Worked: 1
Contribution to the Project: Geomorphologist - works on Hypothesis 1
Funding Support: Oregon State University
International Collaboration: No
International Travel: No

Henry Lin
Email: hul3@psu.edu
Most Senior Project Role: Co-Investigator
Nearest Person Month Worked: 1
Contribution to the Project: Hydorpedologist - works on Hypotheses 1, 4, 7, and 8
Funding Support: Penn State and NSF
International Collaboration: No
International Travel: No

Wenjing Liu
Email: wul26@psu.edu
Most Senior Project Role: Co-Investigator
Nearest Person Month Worked: 1
Contribution to the Project: collaborative investigator
Funding Support: Chinese Academy of Sciences
International Collaboration: No
International Travel: No

Robert Long
Email: rlong@fs.fed.us
Most Senior Project Role: Co-Investigator
Nearest Person Month Worked: 1
Contribution to the Project: collaborating investigator
Funding Support: US Forest Service
International Collaboration: No
International Travel: No

Greg Mount
Email: Gregory.Mount@iup.edu
Most Senior Project Role: Co-Investigator
Nearest Person Month Worked: 1
Contribution to the Project: Hydrogeophysical specialist, collaborator
Funding Support: IUP
International Collaboration: No
International Travel: No

Jon Nyquist
<table>
<thead>
<tr>
<th>Email</th>
<th>Most Senior Project Role: Co-Investigator</th>
<th>Nearest Person Month Worked: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Email: nyq@temple.edu</td>
<td>Contribution to the Project: collaborating investigator</td>
<td>Funding Support: Temple</td>
</tr>
<tr>
<td>Email: Julia.Perdrial@uvm.edu</td>
<td>Nearest Person Month Worked: 1</td>
<td>International Collaboration: No</td>
</tr>
<tr>
<td>Email: julie.pett-ridge@oregonstate.edu</td>
<td>Contribution to the Project: contributing collaborator</td>
<td>International Travel: No</td>
</tr>
<tr>
<td>Email: drichter@duke.edu</td>
<td>Nearest Person Month Worked: 1</td>
<td>International Collaboration: No</td>
</tr>
<tr>
<td>Email: yshi@psu.edu</td>
<td>Contribution to the Project: Hydrologist - works on Hypothesis 7 and 8</td>
<td>International Travel: No</td>
</tr>
<tr>
<td>Email: ksingha@mines.edu</td>
<td>Nearest Person Month Worked: 1</td>
<td>International Collaboration: No</td>
</tr>
</tbody>
</table>
Nearest Person Month Worked: 1
Contribution to the Project: Hydrogeologist - works on Hypothesis 1
Funding Support: Colorado School of Mines
International Collaboration: No
International Travel: No

Lee Slater
Email: lslater@andromeda.rutgers.edu
Most Senior Project Role: Co-Investigator
Nearest Person Month Worked: 1
Contribution to the Project: Collaborative investigator
Funding Support: Rutgers University
International Collaboration: No
International Travel: No

Aaron Stottlemyer
Email: ads175@psu.edu
Most Senior Project Role: Co-Investigator
Nearest Person Month Worked: 1
Contribution to the Project: collaborative investigations
Funding Support: Penn State
International Collaboration: No
International Travel: No

Pamela Sullivan
Email: pls21@psu.edu
Most Senior Project Role: Co-Investigator
Nearest Person Month Worked: 1
Contribution to the Project: Hydrochemist - works on Hypotheses 6 and 9
Funding Support: The University of Kansas
International Collaboration: No
International Travel: No

Nicole West
Email: west2n@cmich.edu
Most Senior Project Role: Co-Investigator
Nearest Person Month Worked: 1
Contribution to the Project: geomorphologist - works on Hypothesis 1
Funding Support: Central Michigan University
International Collaboration: No
International Travel: No

Marc Caffee (PRIME lab, Purdue Univ Caffee
Email: mcaffee@purdue.edu
Most Senior Project Role: Faculty
Nearest Person Month Worked: 1
<table>
<thead>
<tr>
<th>Name</th>
<th>Email</th>
<th>Most Senior Project Role</th>
<th>Nearest Person Month Worked</th>
<th>Contribution to the Project</th>
<th>Funding Support</th>
<th>International Collaboration</th>
<th>International Travel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jonathan Duncan</td>
<td>jxd523@psu.edu</td>
<td>Faculty</td>
<td>1</td>
<td>contributed to H6</td>
<td>PRIME lab, Purdue University</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Brian Clarke</td>
<td>bac43@psu.edu</td>
<td>Postdoctoral (scholar, fellow or other postdoctoral position)</td>
<td>0</td>
<td>Geomorphologist - worked on Hypothesis 1</td>
<td>unknown</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Xin Gu</td>
<td>xug102@psu.edu</td>
<td>Postdoctoral (scholar, fellow or other postdoctoral position)</td>
<td>1</td>
<td>collaborative research</td>
<td>Penn State</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Tom Adams</td>
<td>tsa3@psu.edu</td>
<td>Technician</td>
<td>0</td>
<td>Contributes to H3</td>
<td>Penn State and DOE</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Li Gu</td>
<td>lug163@psu.edu</td>
<td>Staff Scientist (doctoral level)</td>
<td>2</td>
<td>Contributes to H4</td>
<td>Penn State</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Name</td>
<td>Email</td>
<td>Most Senior Project Role</td>
<td>Nearest Person Month Worked</td>
<td>Contribution to the Project</td>
<td>Funding Support</td>
<td>International Collaboration</td>
<td>International Travel</td>
</tr>
<tr>
<td>--------------------</td>
<td>------------------------</td>
<td>--------------------------</td>
<td>----------------------------</td>
<td>----------------------------</td>
<td>-----------------</td>
<td>-----------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Alan Hidy</td>
<td>hidy3@llnl.gov</td>
<td>Staff Scientist (doctoral level)</td>
<td>1</td>
<td>Laboratory Analyst</td>
<td>NSF</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Susan Zimmerman</td>
<td>zimmerman17@llnl.gov</td>
<td>Staff Scientist (doctoral level)</td>
<td>1</td>
<td>Laboratory Analyst</td>
<td>Lawrence Livermore National Laboratory</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Chen Bao</td>
<td>cub200@psu.edu</td>
<td>Graduate Student (research assistant)</td>
<td>0</td>
<td>works on Hypothesis 5</td>
<td>unknown</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Weile Chen</td>
<td>wuc139@psu.edu</td>
<td>Graduate Student (research assistant)</td>
<td>1</td>
<td>collaborative research</td>
<td>DOE</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Joanmarie Del Vecchio</td>
<td>jzd5570@psu.edu</td>
<td>Graduate Student (research assistant)</td>
<td>5</td>
<td>MS student in geomorphology working on H1</td>
<td>CZO</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
International Collaboration: No
International Travel: No

Alison Denn
Email: adenn@uvm.edu
Most Senior Project Role: Graduate Student (research assistant)
Nearest Person Month Worked: 1
Contribution to the Project: contributing to H1
Funding Support: CZO

International Collaboration: No
International Travel: No

Benjamin Dillner
Email: bmd42@psu.edu
Most Senior Project Role: Graduate Student (research assistant)
Nearest Person Month Worked: 12
Contribution to the Project: contributes to H2
Funding Support: CZO

International Collaboration: No
International Travel: No

Baldwin Douglas
Email: dcb5006@psu.edu
Most Senior Project Role: Graduate Student (research assistant)
Nearest Person Month Worked: 0
Contribution to the Project: collaborative investigations
Funding Support: Penn State

International Collaboration: No
International Travel: No

Yuting He
Email: yzh120@psu.edu
Most Senior Project Role: Graduate Student (research assistant)
Nearest Person Month Worked: 12
Contribution to the Project: works on PIHM and Biome-BGC
Funding Support: CZO

International Collaboration: No
International Travel: Yes, United Kingdom - 0 years, 0 months, 4 days

Peyman Heidari
Email: heidarip@mst.edu
Most Senior Project Role: Graduate Student (research assistant)
Nearest Person Month Worked: 0
Contribution to the Project: collaborator on reactive transport modeling
Funding Support: Missouri University of Science and Technology

International Collaboration: No
International Travel: No
Lillian Hill
Email: lzh157@psu.edu
Most Senior Project Role: Graduate Student (research assistant)
Nearest Person Month Worked: 0
Contribution to the Project: contributing to H2
Funding Support: CZO
International Collaboration: No
International Travel: No

Beth Hoagland
Email: neh137@psu.edu
Most Senior Project Role: Graduate Student (research assistant)
Nearest Person Month Worked: 1
Contribution to the Project: contributing to H6
Funding Support: CZO
International Collaboration: No
International Travel: No

Caitlin Hodges
Email: cah423@psu.edu
Most Senior Project Role: Graduate Student (research assistant)
Nearest Person Month Worked: 12
Contribution to the Project: contributes to H2
Funding Support: CZO
International Collaboration: No
International Travel: No

Rondy Malik
Email: rjm472@psu.edu
Most Senior Project Role: Graduate Student (research assistant)
Nearest Person Month Worked: 12
Contribution to the Project: contributes to H3
Funding Support: CZO and Penn State
International Collaboration: No
International Travel: No

Alexandra Orr
Email: aso124@psu.edu
Most Senior Project Role: Graduate Student (research assistant)
Nearest Person Month Worked: 0
Contribution to the Project: collaborative investigations
Funding Support: Penn State
International Collaboration: No
International Travel: No

Gordon Osterman
Email: gko4@rutgers.edu
Most Senior Project Role: Graduate Student (research assistant)
Nearest Person Month Worked: 0
Contribution to the Project: groundwater geophysics
Funding Support: Rutgers
International Collaboration: No
International Travel: No

Edward Primka
Email: ejp25@psu.edu
Most Senior Project Role: Graduate Student (research assistant)
Nearest Person Month Worked: 1
Contribution to the Project: contributes to H3
Funding Support: CZO, Penn State, and DOE
International Collaboration: No
International Travel: No

Warren Reed
Email: wpr5005@psu.edu
Most Senior Project Role: Graduate Student (research assistant)
Nearest Person Month Worked: 12
Contribution to the Project: Contributes to H3
Funding Support: Penn State
International Collaboration: No
International Travel: No

Perri Silverhart
Email: phs8@psu.edu
Most Senior Project Role: Graduate Student (research assistant)
Nearest Person Month Worked: 6
Contribution to the Project: worked on H1
Funding Support: REU/RET for CZO from NSF
International Collaboration: No
International Travel: No

Ismaiel Szink
Email: ips5062@PSU.EDU
Most Senior Project Role: Graduate Student (research assistant)
Nearest Person Month Worked: 12
Contribution to the Project: Contributes to H3
Funding Support: Penn State and NSF
International Collaboration: No
International Travel: No

Qicheng Tang
Email: qut9@psu.edu
Most Senior Project Role: Graduate Student (research assistant)
<table>
<thead>
<tr>
<th>Nearest Person Month Worked:</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contribution to the Project:</td>
<td>contributes to H4</td>
</tr>
<tr>
<td>Funding Support:</td>
<td>CZO</td>
</tr>
<tr>
<td>International Collaboration:</td>
<td>No</td>
</tr>
<tr>
<td>International Travel:</td>
<td>No</td>
</tr>
</tbody>
</table>

Anna Wade
Email: anna.wade@duke.edu
Most Senior Project Role: Graduate Student (research assistant)
Nearest Person Month Worked: 0
Contribution to the Project: collaborating student working with postdoc to learn hydrology sampling techniques in the CZO.
Funding Support: Duke University
International Collaboration: No
International Travel: No

Callun Wayman
Email: crw5269@psu.edu
Most Senior Project Role: Graduate Student (research assistant)
Nearest Person Month Worked: 12
Contribution to the Project: contributed to H6
Funding Support: CZO
International Collaboration: No
International Travel: No

Julie Weitzman
Email: jnw142@psu.edu
Most Senior Project Role: Graduate Student (research assistant)
Nearest Person Month Worked: 0
Contribution to the Project: works on Hypothesis 2
Funding Support: CZO and NSF
International Collaboration: No
International Travel: No

Dacheng Xiao
Email: dzx102@psu.edu
Most Senior Project Role: Graduate Student (research assistant)
Nearest Person Month Worked: 12
Contribution to the Project: contributing to H5 and H8
Funding Support: CZO
International Collaboration: No
International Travel: No

Fardous Zarif
Email: fardous zarif
Most Senior Project Role: Graduate Student (research assistant)
Nearest Person Month Worked: 0
<table>
<thead>
<tr>
<th>Contribution to the Project</th>
<th>Funding Support</th>
<th>International Collaboration</th>
<th>International Travel</th>
</tr>
</thead>
<tbody>
<tr>
<td>collaborator on geophysical methods, specifically electrical resistivity surveys</td>
<td>Rutgers University</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Brandon Forsythe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email: brf11@psu.edu</td>
<td>Most Senior Project Role: Non-Student Research Assistant</td>
<td>Nearest Person Month Worked: 12</td>
<td></td>
</tr>
<tr>
<td>Contribution to the Project: watershed coordinator</td>
<td>Funding Support: CZO</td>
<td>International Collaboration: No</td>
<td>International Travel: No</td>
</tr>
<tr>
<td>Jeremy Harper</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email: jph217@psu.edu</td>
<td>Most Senior Project Role: Non-Student Research Assistant</td>
<td>Nearest Person Month Worked: 6</td>
<td></td>
</tr>
<tr>
<td>Contribution to the Project: field assistant</td>
<td>Funding Support: CZO</td>
<td>International Collaboration: No</td>
<td>International Travel: No</td>
</tr>
<tr>
<td>Dan Shaphic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email: dms139@psu.edu</td>
<td>Most Senior Project Role: Non-Student Research Assistant</td>
<td>Nearest Person Month Worked: 9</td>
<td></td>
</tr>
<tr>
<td>Contribution to the Project: data management</td>
<td>Funding Support: CZO</td>
<td>International Collaboration: No</td>
<td>International Travel: No</td>
</tr>
<tr>
<td>Jennifer Williams</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email: jzw126@psu.edu</td>
<td>Most Senior Project Role: Non-Student Research Assistant</td>
<td>Nearest Person Month Worked: 12</td>
<td></td>
</tr>
<tr>
<td>Contribution to the Project: Program, Outreach, and Sample Coordinator</td>
<td>Funding Support: CZO</td>
<td>International Collaboration: No</td>
<td>International Travel: No</td>
</tr>
<tr>
<td>Nathan Carpenter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email: ncarpenter@mtech.edu</td>
<td>Most Senior Project Role: Undergraduate Student</td>
<td>Nearest Person Month Worked: 1</td>
<td></td>
</tr>
<tr>
<td>Contribution to the Project: undergraduate thesis on Cole Farm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Funding Support: Penn State and NSF
International Collaboration: No
International Travel: No

Michael Forgeng
Email: mjf5807@psu.edu
Most Senior Project Role: Undergraduate Student
Nearest Person Month Worked: 1
Contribution to the Project: undergraduate field assistant
Funding Support: CZO
International Collaboration: No
International Travel: No

Joshua Potter
Email: jep189@psu.edu
Most Senior Project Role: Consultant
Nearest Person Month Worked: 1
Contribution to the Project: collaborative outreach
Funding Support: Penn State
International Collaboration: No
International Travel: No

What other organizations have been involved as partners?

<table>
<thead>
<tr>
<th>Name</th>
<th>Type of Partner Organization</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beijing Normal University</td>
<td>Academic Institution</td>
<td>Beijing, China</td>
</tr>
<tr>
<td>Brown University</td>
<td>Academic Institution</td>
<td>Providence, RI</td>
</tr>
<tr>
<td>Missouri University of Science and Technology</td>
<td>Academic Institution</td>
<td>Rolla, MO</td>
</tr>
<tr>
<td>Ninxia University</td>
<td>Academic Institution</td>
<td>Ningxia, China</td>
</tr>
<tr>
<td>Oregon State University</td>
<td>Academic Institution</td>
<td>Corvallis, Oregon</td>
</tr>
<tr>
<td>Princeton University</td>
<td>Academic Institution</td>
<td>Princeton, NJ</td>
</tr>
<tr>
<td>Rutgers University</td>
<td>Academic Institution</td>
<td>New Brunswick, New Jersey</td>
</tr>
<tr>
<td>Saint Louis University</td>
<td>Academic Institution</td>
<td>Saint Louis, MO</td>
</tr>
<tr>
<td>State College Area School District</td>
<td>School or School Systems</td>
<td>State College, PA</td>
</tr>
<tr>
<td>Technical Univ. of Munich</td>
<td>Academic Institution</td>
<td>Munich, Germany</td>
</tr>
<tr>
<td>Temple University</td>
<td>Academic Institution</td>
<td>Philadelphia, PA</td>
</tr>
<tr>
<td>UMass-Amherst</td>
<td>Academic Institution</td>
<td>Amherst, MA</td>
</tr>
<tr>
<td>CTEMPS</td>
<td>Academic Institution</td>
<td>University of Nevada, Reno</td>
</tr>
<tr>
<td>USDA Forest Service</td>
<td>State or Local Government</td>
<td>Corvallis, OR.</td>
</tr>
<tr>
<td>USDA-NRCS-NSSC</td>
<td>State or Local Government</td>
<td>Newtown Square, PA</td>
</tr>
<tr>
<td>Organization</td>
<td>Location</td>
<td>Type</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Univ of Kansas</td>
<td>Lawrence, KS</td>
<td>Academic Institution</td>
</tr>
<tr>
<td>University of Guelph, Canada</td>
<td>Guelph, Canada</td>
<td>Academic Institution</td>
</tr>
<tr>
<td>University of Nebraska Omaha</td>
<td>Omaha, NE</td>
<td>Academic Institution</td>
</tr>
<tr>
<td>University of Texas @ El Paso</td>
<td>El Paso, TX</td>
<td>Academic Institution</td>
</tr>
<tr>
<td>University of Toulouse, France</td>
<td>Toulouse, France</td>
<td>Academic Institution</td>
</tr>
<tr>
<td>Chinese Academy of Sciences</td>
<td>Beijing, China</td>
<td>Academic Institution</td>
</tr>
<tr>
<td>Colgate University</td>
<td>Hamilton, NY</td>
<td>Academic Institution</td>
</tr>
<tr>
<td>Dickinson College</td>
<td>Carlisle, PA</td>
<td>Academic Institution</td>
</tr>
<tr>
<td>Hollidaysburg Area High School</td>
<td>Hollidaysburg, PA</td>
<td>School or School Systems</td>
</tr>
<tr>
<td>Horbart & William Smith Colleges</td>
<td>Geneva, NY</td>
<td>Academic Institution</td>
</tr>
<tr>
<td>Indiana University of Pennsylvania</td>
<td>Indiana, PA</td>
<td>Academic Institution</td>
</tr>
<tr>
<td>Kent State University</td>
<td>Kent, OH</td>
<td>Academic Institution</td>
</tr>
</tbody>
</table>

Full details of organizations that have been involved as partners:

Beijing Normal University

Organization Type: Academic Institution
Organization Location: Beijing, China
Partner's Contribution to the Project:
Collaborative Research
More Detail on Partner and Contribution:

Brown University

Organization Type: Academic Institution
Organization Location: Providence, RI
Partner's Contribution to the Project:
Collaborative Research
More Detail on Partner and Contribution:

CTEMPS

Organization Type: Academic Institution
Organization Location: University of Nevada, Reno
Partner's Contribution to the Project:
Facilities
Collaborative Research
More Detail on Partner and Contribution:

Chinese Academy of Sciences

Organization Type: Academic Institution
Organization Location: Beijing, China
Partner's Contribution to the Project:
Collaborative Research
<table>
<thead>
<tr>
<th>Organization</th>
<th>Organization Type</th>
<th>Organization Location</th>
<th>Partner's Contribution to the Project</th>
<th>More Detail on Partner and Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colgate University</td>
<td>Academic Institution</td>
<td>Hamilton, NY</td>
<td>Collaborative Research</td>
<td></td>
</tr>
<tr>
<td>Dickinson College</td>
<td>Academic Institution</td>
<td>Carlisle, Pennsylvania</td>
<td>Collaborative Research</td>
<td></td>
</tr>
<tr>
<td>Hollidaysburg Area High School</td>
<td>School or School Systems</td>
<td>Hollidaysburg, PA</td>
<td>Collaborative Research</td>
<td></td>
</tr>
<tr>
<td>Horbart & William Smith Colleges</td>
<td>Academic Institution</td>
<td>Geneva, New York</td>
<td>Collaborative Research</td>
<td></td>
</tr>
<tr>
<td>Indiana University of Pennsylvania</td>
<td>Academic Institution</td>
<td>Indiana, Pennsylvania</td>
<td>Collaborative Research</td>
<td></td>
</tr>
<tr>
<td>Kent State University</td>
<td>Academic Institution</td>
<td>Kent, Ohio</td>
<td>Collaborative Research</td>
<td></td>
</tr>
<tr>
<td>Organization</td>
<td>Type</td>
<td>Location</td>
<td>Contribution</td>
<td>More Detail on Partner and Contribution</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------</td>
<td>-------------------</td>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Missouri U.</td>
<td>Academic Institution</td>
<td>Rolla, MO</td>
<td>Collaborative Research</td>
<td></td>
</tr>
<tr>
<td>Ninxia U.</td>
<td>Academic Institution</td>
<td>Ningxia, China</td>
<td>Collaborative Research</td>
<td></td>
</tr>
<tr>
<td>Oregon St. U.</td>
<td>Academic Institution</td>
<td>Corvallis, Oregon</td>
<td>Collaborative Research</td>
<td></td>
</tr>
<tr>
<td>Princeton U.</td>
<td>Academic Institution</td>
<td>Princeton, NJ</td>
<td>Collaborative Research</td>
<td></td>
</tr>
<tr>
<td>Rutgers U.</td>
<td>Academic Institution</td>
<td>New Brunswick, NJ</td>
<td>Collaborative Research</td>
<td></td>
</tr>
<tr>
<td>Saint Louis U.</td>
<td>Academic Institution</td>
<td>Saint Louis, MO</td>
<td>Collaborative Research</td>
<td></td>
</tr>
<tr>
<td>State College Area S. D.</td>
<td>School or School Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organization Location: State College, PA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partner's Contribution to the Project:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collaborative Research</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>More Detail on Partner and Contribution:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technical Univ. of Munich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organization Type: Academic Institution</td>
</tr>
<tr>
<td>Organization Location: Munich, Germany</td>
</tr>
<tr>
<td>Partner's Contribution to the Project:</td>
</tr>
<tr>
<td>Collaborative Research</td>
</tr>
<tr>
<td>More Detail on Partner and Contribution:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temple University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organization Type: Academic Institution</td>
</tr>
<tr>
<td>Organization Location: Philadelphia, PA</td>
</tr>
<tr>
<td>Partner's Contribution to the Project:</td>
</tr>
<tr>
<td>Collaborative Research</td>
</tr>
<tr>
<td>More Detail on Partner and Contribution:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UMass-Amherst</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organization Type: Academic Institution</td>
</tr>
<tr>
<td>Organization Location: Amherst, MA</td>
</tr>
<tr>
<td>Partner's Contribution to the Project:</td>
</tr>
<tr>
<td>Collaborative Research</td>
</tr>
<tr>
<td>More Detail on Partner and Contribution:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>USDA Forest Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organization Type: State or Local Government</td>
</tr>
<tr>
<td>Organization Location: Corvallis, OR.</td>
</tr>
<tr>
<td>Partner's Contribution to the Project:</td>
</tr>
<tr>
<td>Collaborative Research</td>
</tr>
<tr>
<td>More Detail on Partner and Contribution:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>USDA-NRCS-NSSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organization Type: State or Local Government</td>
</tr>
<tr>
<td>Organization Location: Newtown Square, PA</td>
</tr>
<tr>
<td>Partner's Contribution to the Project:</td>
</tr>
<tr>
<td>Collaborative Research</td>
</tr>
<tr>
<td>More Detail on Partner and Contribution:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Univ of Kansas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organization Type: Academic Institution</td>
</tr>
<tr>
<td>Organization Location: Lawrence, Kansas</td>
</tr>
<tr>
<td>Partner's Contribution to the Project:</td>
</tr>
</tbody>
</table>
Collaborative Research

More Detail on Partner and Contribution:

University of Guelph, Canada
Organization Type: Academic Institution
Organization Location: Guelph, ON, Canada
Partner's Contribution to the Project:
Collaborative Research

More Detail on Partner and Contribution:

University of Nebraska Omaha
Organization Type: Academic Institution
Organization Location: Omaha, NE
Partner's Contribution to the Project:
Collaborative Research

More Detail on Partner and Contribution:

University of Texas @ El Paso
Organization Type: Academic Institution
Organization Location: El Paso, TX
Partner's Contribution to the Project:
Collaborative Research

More Detail on Partner and Contribution:

University of Toulouse, France
Organization Type: Academic Institution
Organization Location: Toulouse, France
Partner's Contribution to the Project:
Collaborative Research

More Detail on Partner and Contribution:

What other collaborators or contacts have been involved?

PA Department of Conservation & Natural Resources - Bureau of Topographic & Geologic Survey
PA Department of Conservation & Natural Resources - Bureau of Forestry
PA Department of Conservation & Natural Resources - State Parks
Centre County Pennsylvania Senior Environmental Corp (CCPaSEC)
David Goerman, Jr. | Water Program Specialist | Department of Environmental Protection
Heather Gall, Ph.D. | Assistant Professor of Agricultural and Biological Engineering | Penn State
Robert Hilton, Ph.D. | Associate Professor of Geosciences | Durham University, UK
Mateja Ogric | Geosciences graduate student | Durham University, UK
Elizabeth Herndon, Ph.D. | Assistant Professor of Geology | Kent State University
Impacts

What is the impact on the development of the principal discipline(s) of the project?

Overall:
We published a paper describing the vision of a future CZO network of observatories and we participated in running the National Critical Zone Science Workshop: Current Advances & Future Opportunities in summer 2017.

The team has developed and is using RT-Flux-PIHM -- the first numerical model capable of modeling hydrological, land surface interactions, and multi-component reactive transport together in one code.

With implementation of instrumentation in our agricultural watershed, we are just about to begin to publish papers probing how agriculture affects CZ processes.

We discovered the importance of transport of clay particles in the subsurface in shale lithologies.

We are starting to show how the understanding of reaction fronts in the subsurface can elucidate hydrologic flow paths.

We have published a water budget, nitrogen budget, carbon budget, and manganese budget for Shale Hills.

We discovered that belowground biomass can vary with lithology even when aboveground biomass does not.

We are learning and teaching how to assimilate data during modelling -- a technique used extensively in meteorology -- in hydrology and earth system modelling.

Impacts for each hypothesis:

H1. The work at Young Womans Creek provides a key data set for understanding how rock strength modulates landscape response to base-level fall.

H2. The work in all three subcatchments on H2 is testing a simple and robust pore chemistry monitoring approach, and is emphasizing comparisons among catenas. The work could lead to a widely applied strategy to compare pore chemistry across the CZ. Our work is showing the utility of using soil gas chemistry to infer important metabolisms in the soil environment.

H3. The team has improved its understanding of how different tree species of different root morphology and different mycorrhizal types forage for water and nutrients. This information regarding root traits is now being incorporated into Earth System Models to reduce the uncertainty in terrestrial carbon stores and fluxes.

H4. H4 observed that the shale site showed a higher preferential flow frequency at the mid-slope sites and ridge-top site, while at the valley floor the sandstone site had a higher preferential flow frequency. This work indicates that lithology plays an important role in creating different macropore flow patterns, while slope position should also be considered, especially for toe slope positions where the water table is shallower. We proposed a new multiple linear regression method, a multi-index comprehensive evaluation method and a weighted osculating method to enhance our ability to observe the highly dynamic preferential flow. The chance of subsurface flow occurring at larger spatial scale is strongly associated with the precipitation input.
This confirmed the threshold behavior of precipitation in triggering large scale lateral flow in the Shale Hills catchment.

H5. H5 developed and is using RT-Flux-PIHM -- the first numerical model capable of modeling hydrological, land surface interactions, and multi-component reactive transport together in one code. This provides a powerful tool to explore complex process coupling not only for SSHCZO, but also for other CZOs. It can be used for X-CZO model data comparison to derive general principles. We also continued work on the hillslope regolith model. Once developed, this code will also be used at other CZOs.

H6. The H6 team collected stream chemistry and discharge data, and has integrated physical and chemical measurements to locate and characterize groundwater – streamwater interactions, specifically addressing questions about near-subsurface water transport and the observation of multiple "water tables" on hillslopes. Over the next year the team will continue research on simulating solute flux along Shaver's Creek by upscaling mechanistic models from subwatersheds, or developing new approaches using geospatial and statistical methods. Measurements collected at our new farm site are also enabling us to start to understand the broader Shavers Creek watershed, and especially the agricultural component.

H7. H7 is determining the degree to which knowledge of topography, lithology, and soil physical properties are needed to understand watershed carbon-nitrogen-water cycling. We will also identify the observational networks required to characterize carbon stock and fluxes in complex topography. This work moves us towards the objective of a data assimilation system for coupled watershed hydrology and biogeochemistry. This work will ultimately result in an improved understanding of the impact of topography and soil properties on carbon-water-nutrient cycling across the earth’s landscape, especially in low-order watersheds. We anticipate that this modeling system and CZO observations can be used to evaluate global model parameterizations of these processes and systems, and to assess the impacts of climate and land-use change on watershed hydrology and biogeochemistry with high resolution and fidelity.

H9. H9 tested the team's first attempt at earthcasting weathering at Shale Hills catchment by using aspect as if it provided a proxy for a future warmer climate. Use of a cascade of models along with the weathering code, WITCH, allowed the team to model weathering on both sides of the Shale Hills catchment. With this work the team began to understand why weathering fluxes are larger on the north side of the catchment, soil porewater chemistry is roughly the same on both sides of the catchment, but the extent of weathering recorded in the soils is greater on the south side of the catchment.

What is the impact on other disciplines?

Overall: The SSHCZO has an excellent track record and organizational plan for development of an integrated CZ model that will be used in many ancillary disciplines. A series of papers have been published describing the modules and their use.

The PIHM modelling family now has a suite of modules that can be used for simulations of different functions at different time scales:

- PIHM: hydrology. Duffy et al. Completed
- Flux-PIHM: hydrology coupled with land surface interactions. Shi et al. Completed
- RT-Flux-PIHM -- Chen Bao and Li Li hydrological, land surface interactions, and multi-component reactive transport
- Flux-PIHM-BGC: hydrology coupled with land surface interactions and biogeochemical reactions. Ken Davis and Yuning Shi In Progress
- Flux-PIHM-WITCH: hydrology coupled with land surface interactions and weathering. P. Sullivan and Y. Godderis In Progress
- PIHM-LE: hydrology coupled with landscape evolution. R. Slingerland and Y. Zhang Paper submitted

Impacts on defense-related science: the CZO's three COSMOS units (installed in each of the three subcatchments) have become of great interest to the US Army. The Army is interested in how to measure soil moisture to be able to predict mud conditions on roads. COSMOS might be a useful way to make such measurements. The Army has begun making wide field measurements to be used to assess utility of COSMOS.

The Pennsylvania Dept of Enviro Protection has reached out to the CZO to help the DEP categorize upland watersheds in terms of vulnerability to perturbations from mining, forest disturbance, shale gas development, road building, etc. The SSHCZO has begun to work with the DEP on this important question and they may provide the CZO funding for this work.

Impacts on other disciplines described per each hypothesis:

H1. H1 has begun developing the use of combined GPR, seismic, and resistivity surveys for geomorphology and this use of these geophysical techniques in this way will be useful for soil science and for characterizing the architecture of the critical zone.

H2. Ecological experimental designs could be impacted if the team's catena monitoring approach proves successful in illuminating key drivers of ecosystem dynamics from a few carefully located sampling points. Evidence that this impact is occurring comes from the Hoagland et al. 2017 paper in which pore water chemistry data from this team led to a new interpretation of Q-C relationships for hydrologists.

H5. The RT-FLUX-PIHM model is cross-disciplinary in its capability of integrating processes important for different disciplines (hydrology and geochemistry). The hillslope regolith model will be integrating hydrology, geochemistry, and geomorphology.

H7. The development of the PIHM family of models has initiated collaboration across all of the disciplines of our CZO project. Our work has also introduced the concept of biogeochemical data assimilation to fields not typically used to utilizing these tools in their research. We hope that the results of this work will also enable high-resolution, high-fidelity simulation of the impacts of climate, environmental chemistry, and land use changes on watershed carbon, nitrogen and water cycles. Our work may inform new treatment of the role of topography in regional to global scale simulations of the
terrestrial carbon cycle, such as earth systems models used for climate projections.

H9. By driving WITCH with Flux-PIHM, H9 showed how to incorporate porewater chemistry, soil gas chemistry, hydrology, and land surface interactions together to model weathering.

What is the impact on the development of human resources?

During this year, 22 faculty, 37 graduate students, and ~100 undergraduate students have been working or studying at the Susquehanna Shale Hills CZO. The site is acting as a mecca for students and faculty to learn and teach critical zone science. The CZO was chosen as the location for the 2017 annual PA Geological Field Conference. During the conference, 243 Pennsylvania geologists toured the CZO and were introduced to CZ science from ecology to soil science to hydrology to geomorphology.

In addition, a 15 member Chinese delegation of geoscientists chose to spend a week learning of CZ research, field/laboratory techniques, data management, sample storage/archive protocols, and developing ideas for collaborations.

8 water resource extension educators were introduced to CZ processes such as soil moisture dynamics, macropore flow in the subsurface, geochemical weathering of the shale bedrock to shale-derived soils, and the timing and usage of water in the catchment by the vegetation;

4 near-surface geophysics classes from different institutions, along with 5 Chinese scholars engaged in a 1-day resistivity and seismic survey campaign;

17 undergraduates completed GeoPATHS - a 2 week near-surface field experience in the Garner Run catena (11 female participants and 12 under-represented minority participants) - project was led by 7 faculty from 5 institutions and peer-mentored by 4 graduate students (2 female and 2 under-represented minority);

Shale Hills served as a test bed for the first ever academically-led large scale 3D seismic refraction survey (funded by DOE).

Shale Hills also hosted a team from the Army Corp Geospatial Research Laboratory Engineer Research and Development Center which captured leaf area index (LAI) measurements, collected soil cores for chemical analyses, utilized lidar mapping via Leica C10 (tripod mounted) and Geoslam Zeb Revo (hand-held backpack) techniques, and measured soil water content using time-domain reflectometry (TDR) within the Cosmic-ray Soil Moisture Observing System (COSMOS) footprint with the goal to develop and test models a priori that utilize remote sensing to predict landscape characteristics;

Shale Hills CZO also was used by the following Penn State classes: PSU Forestry 475 - Principles of Forest Soils Management, PSU Geoscience 483 - Environmental Geophysics, PSU Geoscience 413 - Techniques in Environmental Geochemistry, PSU Geoscience 203 - Physical Processes in Geology, PSU Soils 405 - Hydropedology, and PSU Soils 597 - Watershed Ecohydrology;

The CZO seminar series this year included the following presentations, open to anyone on campus at Penn State and broadcast by webinar to all other interested individuals:

August 25th: Dr. Eric Roden, Albert and Alice Weeks Professor of Geosciences at University of Wisconsin-Madison, presents “Extracellular electron transfer (EET) in the critical zone: biological redox transformation of insoluble Fe-bearing minerals in soil and sedimentary environments”;

September 15th: Dr. Susan L. Brantley, Distinguished Professor of Geosciences and Lead-PI, presents “State of the CZO”;

October 26th: Dr. Diana Karwan, Assistant Professor of Forest Hydrology, University of Minnesota, presents “Short Term Fallout Radionuclides Reveal Sediment Mixing and Transport in the Critical Zone”;

October 30th: Dr. Kathleen Lohse, Associate Professor of Biological Sciences and Director of Reynolds Creek CZO, presents “Improving prediction of soil carbon and fluxes at the plot to landscape scale”; November 6th: Dr. Dave Eissenstat, Professor of Woody Plant Physiology, presents “Strategies of Nutrient Acquisition in Temperate Trees”;

December 4th: Dr. Li Li, Associate Professor of Environmental Engineering, and Dr. Jon Duncan, Assistant Professor of Watershed Hydrology, present “Models in the CZO”; January 26th: “Impact of trees on the CZO” with contributions from Jill Marshall, Ken Davis, Yuting He, Yuning Shi, and others; February 26th: “Upscaling the CZO: from Shale Hills to Shaver’s Creek and beyond” with team member contributions; March 30th: Roman DiBiase presents “CZ interests and proposed research”; April 23rd: Brandon Forsythe and Dan Shapich discuss “Field plans and data protocols”; May 10th – 11th: SSHCZO All-Hands – AGU style mini-symposium, May 10th included 5 oral presentations, the CZO field trip with Ying Fan Reinfielder, 8 faculty, and 18 students/postdocs, and concluded with featured seminar by Ying Fan Reinfielder @ 4:00pm “Three Hydrologic Depths in the Earth’s Critical Zone – Linking Hillslope to Global Processes”, and a student/post-doc dinner with Reinfielder; May 11th included 5 student/postdoc oral presentations, 11 poster presentations, brainstorming for renewal, and networking. The program planner is available http://criticalzone.org/shale-hills/research/annual-activities-shale-hills/.

June 7th: CZO Network Postdoctoral Scholar, Adam Wlostowski, presented “Hydrologic Storage and Partitioning across the CZO Network”

The SSHCZO enabled science through eight seed grants at six other institutions (one investigator at Penn State who was not originally funded by our CZO was also funded):

$9,886 – to Dr. Lixin Jin, University of Texas El Paso, “Using carbon isotopes to determine the sources and mass balance of CO2 during shale weathering at Susquehanna Shale Hills Critical Zone Observatory.” This funding resulted in one presentation at 2013 AGU Fall Meeting and one journal
article published in 2014 Geochimica et Cosmochimica Acta.

$10,464 – to Dr. Jonathan Nyquist and Dr. Laura Toran, Temple University, “Geophysical Prediction of Water Migration along the Soil-Bedrock Interface at the Shale Hills Critical Zone Observatory.” This funding resulted in two presentations, 2013 GSA Annual Meeting and 2014 Northeastern GSA Section Meeting, and one journal article published in 2018 Vadose Zone Journal.

$10,688 – to Dr. Margot Kaye, Penn State, “Filling gaps in the aboveground carbon budget of the SSHO CZO.” This resulted in one Master of Science Thesis and one journal article published in 2017 Canadian Journal of Forest Research.

$9,587 – to Dr. Lin Ma, University of Texas El Paso, “Quantifying regolith formation rates with U-series isotopes along the shale weathering transect within the Susquehanna Shale Hills Critical Zone Observatory.” This resulted in one presentation at 2014 AGU Fall Meeting and one journal article published in 2017 Chemical Geology.

$4,668 – to Dr. Steven Peters and Dr. Frank Pazzaglia, Lehigh University, “Reconciling physical and chemical profiles in the complex soils of the Shale Hills CZO” resulted in training for two early career female Ph.D. graduate students in geochemical techniques and two presentations at NE GSA section meeting in 2014.

$9,902 – to Dr. Elizabeth Herndon, Kent State University, “Investigating inorganic and organic-mediated cation transport from soils to streams” resulted in two presentations, 2015 GSA Fall Meeting and at 2017 AGU Fall Meeting, and one journal article in 2018 Chemical Geology.

$10,000 – to Dr. Carleton Bern, USGS Soil Scientist, “Quantification of mass balance of colloidal material across lithologies and environments” resulted in two presentations, 2017 International Symposium on Applied Isotope Geochemistry and 2016 GSA Fall Meeting, and one journal article in 2018 Chemical Geology.

$19,927 – to Dr. Kristen Brubaker, Hobart William Smith Colleges, “Modeling fine-scale above carbon storage using LiDAR: A comparison across two watersheds” resulted in the training of 2 undergraduate students in ecological field techniques and one journal article published in 2018 Canadian Journal of Forest Research.

What is the impact on physical resources that form infrastructure?

Overall:

Now that instrumentation of the agricultural subcatchment is complete, we have three fully instrumented subcatchments, one on shale, one on sandstone, and one on cultivated calcareous shale. Hydrologic sampling of the entire watershed of Shaver’s Creek has been ongoing since fall 2016. A new deep monitoring well was installed in the valley floor of Shale Hills to a depth of 115ft, and six new wells have been installed in Cole Farm. We fixed our eddy flux tower at Shale Hills and we are in the process of fixing the soil gas samplers throughout all three subcatchments.

We also installed three new soil pits with soil moisture probes in Shale Hills subcatchment.

We completed installation of a COSMOS at Cole Farm: this means that we now have COSMOS installed at Shale Hills, Garner Run, and Cole Farm. This physical installation is of great interest to the US Army and they have begun research in the sites because of the COSMOS installation.

What is the impact on institutional resources that form infrastructure?

The CZO research was leveraged to acquire a DOE grant (Brantley, Nyblade) aimed at assessing the use of geophysics to determine subsurface porosity and chemistry. This work is enabling research by postdocs Xin Gu and Natalie Accardo.

The Shale Hills observatory was also used to assess species variation in mycorrhizal root foraging by a Ph.D. student (Weile Chen) working in the Eissenstat lab and funded by NSF BIO Directorate, IOS program.

Our three COSMOS units (installed in each of the three subcatchments) have become of great interest to the US Army. The Army is interested in how to measure soil moisture to be able to predict mud conditions on roads. COSMOS might be a useful way to make such measurements. The Army has begun making wide field measurements to be used to assess utility of COSMOS.

What is the impact on information resources that form infrastructure?

Four new datasets (Sequential filtration of stream and groundwater of the Shale Hills catchment and High-frequency water chemistry of the Shale Hills catchment 2015, 2016, 2017) have been submitted to the EarthChem library and assigned DOIs, all with public release dates of September 2019, bringing the total EarthChem library contributions from SSHCZO to forty-three.

The SSHCZO is revising “Precepts for Collaboration,” a guide to best practices for collaborative science at the SSHCZO, for publication.

The tree survey at Shale Hills is available on line (measure DBH on all trees >20cm, record mortality, record recruitment, correct species). As these
In a third example, one of the largest environmental problems in the US is nutrient pollution from nonpoint sources. This is a particular problem in the Susquehanna River Basin and has impacted the largest estuary in the USA, the Chesapeake Bay. The work on Shavers Creek is now quantifying N

In a second example, the US is seeking a geologic site to safely dispose radioactive waste. This disposal site must sequester the waste from groundwater, must not be eroded or weathered away, must not be easily fractured to allow inlet of new groundwater, and must be safe from human intrusion. All of these societally relevant questions are essentially CZ questions. Will a geologic repository be eroded before the radwaste decays adequately? This can be rephrased as, what is the rate of weathering and erosion in this locality? All of the work we do at the Susquehanna Shale Hills CZO is aimed at understanding these types of questions, although our target area is one watershed in central PA.

What is the impact on technology transfer?

COSMOS is a new instrument that can be used to measure soil moisture across landscapes. The three COSMOS units (installed in each of the three subcatchments) have become of great interest to the US Army. The Army is interested in how to measure soil moisture to be able to predict mud conditions on roads. COSMOS might be a useful way to make such measurements. The Army has begun making wide field measurements to be used to assess utility of COSMOS. We anticipate working closely with the Army into the future.

What is the impact on society beyond science and technology?

The TeenShale water quality outreach project trained 16 high school participants (2017-2018 academic year) in authentic field research in collaboration with Penn State experts. Participants use scientific instruments to measure stream depth and velocity and water quality indicators such as stream temperature, pH, dissolved oxygen, and electrical conductivity. As an inquiry-based project, all aspects from the evolution from ideas and data gathering, to data analysis, comparisons with big data, and science communication are addressed. New this year, the students are applying their skill sets in a nearby watershed to evaluate the impact of an orphaned well on Wallace Run. This year's cohort included one senior, who participated her entire high school career. An article was published in the October 2017 issue of In The Trenches: ONLINE EXTRA - Bringing the Outdoors In - Application of Hydrogeology Education Tools.

The CZO team continues collaborations with Shaver's Creek Environmental Center. The CZO has been working with them to implement a CZ Hike at the center and CZ exhibits and CZ instrumentation at the center. Thousands of people visit this center annually.

At least three very large societal problems are related to ongoing work at our CZO. Specifically, many members of the public are worried about hydraulic fracturing and whether the injection of fracking fluids could enter groundwater resources. Will fracking harm groundwater? This can be rephrased as, what is the depth of the critical zone? We are actively working to understand how to model and predict the dept of flow of water in the subsurface. CZO data sharing efforts have helped promote data sharing about water quality in areas of shale gas development (see Science paper published on this topic).

In a second example, the US is seeking a geologic site to safely dispose radioactive waste. This disposal site must sequester the waste from groundwater, must not be eroded or weathered away, must not be easily fractured to allow inlet of new groundwater, and must be safe from human intrusion. All of these societally relevant questions are essentially CZ questions. Will a geologic repository be eroded before the radwaste decays adequately? This can be rephrased as, what is the rate of weathering and erosion in this locality? All of the work we do at the Susquehanna Shale Hills CZO is aimed at understanding these types of questions, although our target area is one watershed in central PA.

In a third example, one of the largest environmental problems in the US is nutrient pollution from nonpoint sources. This is a particular problem in the Susquehanna River Basin and has impacted the largest estuary in the USA, the Chesapeake Bay. The work on Shavers Creek is now quantifying N
and P inputs and exports and our upscaling efforts will be used to elucidate issues related to agricultural pollution sources.

The CZO is also actively working to improve models of land-surface processes will inform climate change predictions and climate change impact predictions. These improved predictions are potentially of great value to resource managers from a wide variety of disciplines. No one knows how much of the land surface must be incorporated into earth systems models: with our PIHM suite of models, we are exploring that question.

Other work that has benefited from the CZO:

National Academies of Sciences, Engineering, and Medicine. 2017. Investigative Strategies for Lead-Source Attribution at Superfund Sites Associated with Mining Activities. Washington, DC: The National Academies Press. DOI 10.17226/24898 (contributors: Committee on Sources of Lead Contamination at or near Superfund Sites; Board on Environmental Studies and Toxicology; Division on Earth and Life Studies; National Academies of Sciences, Engineering, and Medicine)

Changes/Problems

Changes in approach and reason for change

After working with SSHCZO for five years, each of Henry Lin's graduate students left his program. In other words, no CZO student chose to remain working with Henry Lin in College of Agricultural Sciences. For example, most recently, grad student Qicheng Tang reported to the CZO PI that he wanted a new advisor. That student is now working with Dave Eissenstat and Jon Duncan. Duncan is a hydrologist and a new Assistant Professor in College of Ag Sci. He is enthused to begin working at the CZO. The work of Qicheng for his dissertation is proceeding well under this new supervision. Henry Lin is welcome to continue working at the CZO (without funded grad students) and he will participate by working (at least) on Qicheng's first paper on soil moisture.

The team also previously reported that the CZO decided not to give out more than the original four seed grants because the grantees were not publishing with the money. In this final year, the CZO was gratified to see that almost all the seed grantees did ultimately publish papers. The papers are summarized elsewhere in this Annual Report. The CZO concluded that the seed grant program was a huge success in that it allowed transfers of NSF dollars from Penn State to other institutions, and, although the timing of publication was somewhat slow, the funding results in extremely high quality work. The seed grant program should be continued.

Actual or Anticipated problems or delays and actions or plans to resolve them

The Shale Hills flux tower was not functioning for a large fraction of the year due to structural problems with the tower, combined with instrument maintenance needs. Those issues are being resolved. We are also replacing some soil gas samplers and sensors in all three subcatchments.

After Tess Russo left Penn State. Susan Brantley supervised her two graduate students, Callum Wayman and Beth Hoagland. Both have done well: Wayman defended his Masters Thesis in early Sept and Hoagland will defend her PhD the first week of October. Hoagland was awarded an NSF Postdoctoral Fellowship and will work at Colorado School of Mines and US Geological Survey.

Some issues remain with respect to Henry Lin and the soil moisture work. Dave Eissenstat and Brantley are working hard to provide the appropriate opportunity for Lin to continue to collaborate and work in the CZO team even if no student wants to work in his program.

Changes that have a significant impact on expenditures

We had to use alternate sources of funds to re drill a well in the valley at Shale Hills because the old wells were collapsing and no NSF funds were available for re drilling. The CZO had to use NSF funds to repair the eddy flux tower at Shale Hills.

The CZO data manager, Dan Shapich, took another job within the university because the CZO could not guarantee him funding after Sept 30 (in other words, before the supplemental funding was received). Dan now consults for the CZO approximately 16 h per week, and the watershed manager, Brandon Forsythe, has picked up the data management activity.

Significant changes in use or care of human subjects

Some surveys are being completed by the high school teachers within TeenShale Network to learn about impacts about that ongoing program. This work has been informed by discussions with IRB through Penn State professor Kathy Brasier.

Significant changes in use or care of vertebrate animals
Nothing to report.

Significant changes in use or care of biohazards

Nothing to report.

Back to the top