Archived content. Christina CZO is no longer active. ×

Do not fill out this information. 

On this particular page, the Initial Text and Image fields for this template are not used (inactive).  A Carousel Slideshow is displayed instead. 

To edit the Carousel Slideshow, Choose Edit Existing >  Carousel Slides.  Then navigate to your CZO's entry entitled "Research"

A multidisciplinary team of scientists established Christiana River Basin Critical Zone Observatory (CRB-CZO) to integrate three major processes governing the critical zone: the water cycle, the mineral cycle, and the carbon cycle. Our holistic study of the entire 1440 km2 Christina River Basin watershed temporally integrates vertical and lateral carbon, mineral and water fluxes over a range of modern and historical land uses.

Explore our goals, hypotheses and objectives »

Research highlights

  • Intensive study sites for the impacts of mature forest, row crop agriculture, and continuous excavation (landfill) on hydrological, pedological and geomorphological processes.
  • Long-term continuous datasets as a basis for hydrological and material transport models, including implementation of the Penn State Integrated Hydrological Model (PIHM).
  • Intensive geochemical characterization of mineral weathering, carbon-mineral complex formation and carbon stabilization in soils and sediments of different origin and landuse.
  • Source-to-sink sediment tracing study using radio-isotopes and other geochemical "fingerprints".

CRB-CZO Research Overview



Example Publications

FEATURED

Beyond clay: towards an improved set of variables for predicting soil organic matter content. Rasmussen C., Heckman K., Wieder W.R., Keiluweit M., Lawrence C.R., Berhe A.A., Blankinship J.C., Crow S.E., Druhan J.L., Hicks Pries C.E., Marin-Spiotta E., Plante A.F., Schädel C., Schimel J.P., Sierra C.A., Thompson A., Wagai R. (2018): Biogeochemistry 137(3): 297–306 Cross-CZO

FEATURED

Reviews and syntheses: on the roles trees play in building and plumbing the critical zone. Brantley, Susan L., David M. Eissenstat, Jill A. Marshall, Sarah E. Godsey, Zsuzsanna Balogh-Brunstad, Diana L. Karwan, Shirley A. Papuga, Joshua Roering, Todd E. Dawson, Jaivime Evaristo, Oliver Chadwick, Jeffrey J. McDonnell, Kathleen C. Weathers (2017): Biogeosciences, 14, 5115-5142 Cross-CZO National

FEATURED

Variation of organic matter quantity and quality in streams at Critical Zone Observatory watersheds. Miller, Matthew P., Boyer, Elizabeth W., McKnight, Diane M., Brown, Michael G., Gabor, Rachel S., Hunsaker, Carolyn T., Iavorivska, Lidiia, Inamdar, Shreeram, Johnson, Dale W., Kaplan, Louis A., Lin, Henry, McDowell, William H., Perdrial, Julia N. (2016): Water Resources Research, 52 (10): 8202–8216 Cross-CZO

FEATURED

Geophysical imaging reveals topographic stress control of bedrock weathering. St. Clair, J., S. Moon, W. S. Holbrook, J. T. Perron, C. S. Riebe, S. J. Martel, B. Carr, C. Harman, K. Singha, D. deB. Richter (2015): Science, 30 October 2015, Vol. 350, no. 6260, pp. 534-538 Cross-CZO National

FEATURED

Hydrologic dynamics and geochemical responses within a floodplain aquifer and hyporheic zone during Hurricane Sandy. Sawyer, A.H., L.A. Kaplan, O. Lazareva, and H.A. Michael (2014): Water Resources Research, 50 (6): 4877–4892

FEATURED

Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Aufdenkampe, A. K., Mayorga, E., Raymond, P. A., Melack, J. M., Doney, S. C., Alin, S. R., Aalto, R. E., and Yoo, K. (2011): Frontiers in Ecology and the Environment 9:53-60.


Chapter 2 – The Role of Critical Zone Observatories in Critical Zone Science. White T., Brantley S., Banwart S., Chorover J., Dietrich W., Derry L., Lohse K., Anderson S., Aufdendkampe A., Bales R., Kumar P., Richter D., McDowell B. (2015): Developments in Earth Surface Processes 19: 15–78 Cross-CZO National

Laser vision: lidar as a transformative tool to advance critical zone science. Harpold, A. A., Marshall, J. A., Lyon, S. W., Barnhart, T. B., Fisher, B. A., Donovan, M., Brubaker, K. M., Crosby, C. J., Glenn, N. F., Glennie, C. L., Kirchner, P. B., Lam, N., Mankoff, K. D., McCreight, J. L., Molotch, N. P., Musselman, K. N., Pelletier, J., Russo, T., Sangireddy, H., Sjöberg, Y., Swetnam, T., and West, N. (2015): Hydrol. Earth Syst. Sci., 19, 2881-2897 Cross-CZO National

Run-of-river impoundments pass bed material and establish equilibrium bed morphology while remaining largely unfilled with sediment in Northern Delaware. Pearson, A.J., and Pizzuto, J.E. (2015): Geomorphology

Soil moisture response to snowmelt timing in mixed-conifer subalpine forests. Harpold A. A., Molotch N. P., Musselman K. N., Bales R. C., Kirchner P. B., Litvak M. and Brooks P. D. (2015): Hydrological Processes 29(12): 2782–2798 Cross-CZO

The Geochemical Transformation of Soils by Agriculture and Its Dependence on Soil Erosion: an Application of Geochemical Mass Balance Approach. Yoo, K., B. Wenell, J. Ji, A. Aufdenkampe, J. Marquard, J. Klaminder (2015): Science of the Total Environment

Nutrient spiraling and transport in streams -- The importance of instream biological processes to nutrient dynamics in streams. Webster, J. R., Newbold, J. D. and Laurence, L. (2015): In Jones, J.W., and Stanley, E. H., editors. Streams Ecosystems in a Changing Environment, Elsevier. ISBN: 9780124058903

Beryllium-7 wet deposition variation with storm height, synoptic classification, and tree canopy state in the mid-Atlantic USA. Karwan, D.L, C.M. Siegert, D.F. Levia, J.E. Pizzuto, A.K Aufdenkampe (2015): Hydrological Processes

More Publications >