Wagenbrenner et al., 2017

Talk/Poster

Sediment Concentration and Its Relation to Catchment Characteristics in Forested Headwater Streams of the Sierra Nevada, California

Wagenbrenner, J.; Safeeq, M.; Hunsaker, C. (2017)
Fall Meeting, American Geophysical Union, December 2017. Abstract H41C-1450.  

Abstract

Sediment yields are highly variable and controlled by multiple topographic, geomorphic, and hydrologic factors that make its generalization or prediction challenging. We examined the characteristics of sediment concentration across ten headwater catchments located in the Kings River Experimental Watersheds, Sierra Nevada, California. Study catchments ranged from 50 to 475 ha and spanned from 1,782 to 2,373 m in elevation in the rain-snow transition zone. Mean annual streamflow ranged from 281 to 408 mm in the low elevation Providence and 436 to 656 mm in the high elevation Bull catchments. We measured suspended sediment concentration (SSC) and bedload sediment yield from 2004-2016. We related these outputs to catchment mean elevation, relief, slope, and drainage density as natural controls and runoff ratio, baseflow index, recession constant, and slope of the flow duration curve as hydrologic controls. The SSC were higher in the high elevation Bull catchments (64 ± 34 mg L-1) as compared to low elevation Providence catchments (30 ± 17 mg L-1). Measured SSC in both Bull and Providence declined with increasing catchment mean elevation (R > - 0.5). We found slope of the flow duration curve (R = 0.85) and recession constant (R = -0.91) as the two of best predictors of SSC in Providence. In Bull, drainage area (R = 0.87) and baseflow index (R = -0.78) were the two best predictors of SSC. The intercept and slope of the suspended sediment yield – discharge rating curve (SSY-Q) in Providence was positively related to catchment relief. In contrast, the SSY-Q intercept increased and SSY-Q slope declined with increasing relief in Bull. The mean annual bedload sediment yield varied between 0.4 Mg km-2 and 4.2 Mg km-2 across the ten watersheds, and bedload contributed a relatively small fraction to the total sediment load. Mean bedload sediment yields across the catchments were most associated with catchment slope and relief. These preliminary results provide insight on the dynamics of sediment yield and the natural range of variability in small headwater Sierra Nevada streams. These results can guide selection of appropriate predictor variables for catchment-scale sediment yield models that inform forest management.

Citation

Wagenbrenner, J.; Safeeq, M.; Hunsaker, C. (2017): Sediment Concentration and Its Relation to Catchment Characteristics in Forested Headwater Streams of the Sierra Nevada, California. Fall Meeting, American Geophysical Union, December 2017. Abstract H41C-1450..