Dataset Listing

El Verde Field Station - Soil Biogeochemistry - Phosphorus fractionation response to dynamic redox (2016-2018)

Variables:  redox treatments, labelled vs unlabelled ryegrass, anoxic vs oxic headspace, day of experiment, mintues after swtiching headspace, NaHCO3 extractable total Phosphorus, NaOH extractable inorganic Phosphorus, NaOH extractable organic Phosphorus, HCl extractable Iron (II), Iron in ammonium oxalate extract, Phosphorus in ammonium oxalate extract,

Date Range:  (2016-2018)

Dataset Creators/Authors:  Yan Lin; Amrita Bhattacharyya; Ashley N. Campbell; Peter S. Nico; Jennifer Pett-Ridge; Whendee L. Silver

Contact:  MIguel Leon,

Field Area:   El Verde Field Station

Keywords & XML
  • Description

    Phosphorus (P) is a key limiting nutrient in highly weathered soils of humid tropical forests. A large proportion of P in these soils is bound to redox‐sensitive iron (Fe) minerals; however, little is known about how Fe redox interactions affect soil P cycling. In an incubation experiment, we changed bulk soil redox regimes by varying headspace conditions (air vs. N2 gas), and examined the responses of soil P and Fe species to two fluctuating treatments (4‐ or 8‐day oxic followed by 4‐day anoxic) and two static redox treatments (oxic and anoxic). A static anoxic headspace increased NaOH‐extractable inorganic P (NaOH‐Pi) and ammonium oxalate‐extractable total P (AO‐Pt) by 10% and 38%, respectively, relative to a static oxic headspace. Persistent anoxia also increased NaHCO3‐extractable total P (NaHCO3‐Pt) towards the end of the experiment. Effects of redox fluctuation were more complex and dependent on temporal scales. Ammonium oxalate‐extractable Fe and Pt concentrations responded to redox fluctuation early in the experiment, but not thereafter, suggesting a depletion of reductants over time. Immediately following a switch from an oxic to anoxic headspace, concentrations of AO‐Pt, AO‐Fe, and HCl‐extractable Fe (II) increased (within 30 min), but fell back to initial levels by 180 min. Surprisingly, the labile P pool (NaHCO3‐Pt) decreased immediately after reduction events, potentially due to resorption and microbial uptake. Overall, our data demonstrate that P fractions can respond rapidly to changes in soil redox conditions, and in environments where redox oscillation is common, roots and microbes may benefit from these rapid P dynamics.
  • Keywords

    Luquillo CZO and LTER, Puerto Rico, Ultisols, plant available phosphorous, Hedley fractionation, Olsen P, redox oscillation, iron reduction

    XML Metadata

    XML is in ISO-19115 geographic metadata format, compatible with ESRI Geoportal Server.

  • Citation for This Dataset

    Lin, Y., A. Bhattacharyya, A. N. Campbell, P. S. Nico, J. Pett-Ridge, W. L. Silver (2018). Phosphorus fractionation responds to dynamic redox conditions in a humid tropical forest soil, HydroShare,

    Citation for This Webpage

    Yan Lin; Amrita Bhattacharyya; Ashley N. Campbell; Peter S. Nico; Jennifer Pett-Ridge; Whendee L. Silver (2018). "CZO Dataset: El Verde Field Station - Soil Biogeochemistry (2016-2018) - Phosphorus fractionation response to dynamic redox." Retrieved 19 Feb 2019, from


El Verde Field Station - Phosphorus fractionation response to dynamic redox

(839/)   Data Level 2

Data Use Policy
Data Sharing Policy
  • Data Use Policy

    DRAFT v.0.4.0

    1. Use our data freely. All CZO Data Products* except those labelled Private** are released to the public and may be freely copied, distributed, edited, remixed, and built upon under the condition that you give acknowledgement as described below. Non-CZO data products — like those produced by USGS or NOAA — have their own use policies, which should be followed.

    2. Give proper citation and acknowledgement. Publications, models and data products that make use of these datasets must include proper citation and acknowledgement. Most importantly, provide a citation in a similar way as a journal article (i.e. author, title, year of publication, name of CZO “publisher”, edition or version, and URL or DOI access information. See Also include at least a brief acknowledgement such as: “Data were provided by the NSF-supported Southern Sierra Critical Zone Observatory” (replace with the appropriate observatory name).

    3. Let us know how you will use the data. The dataset creators would appreciate hearing of any plans to use the dataset. Consider consultation or collaboration with dataset creators.

    *CZO Data Products.  Defined as a data collected with any monetary or logistical support from a CZO.

    **Private. Most private data will be released to the public within 1-2 years, with some exceptionally challenging datasets up to 4 years. To inquire about potential earlier use, please contact us.

  • Data Sharing Policy

    DRAFT v.0.2.5

    All CZO investigators and collaborators who receive material or logistical support from a CZO agree to:

    1. Share data privately within 1 year. CZO investigators and collaborators agree to provide CZO Data Products* — including data files and metadata for raw, quality controlled and/or derived data — to CZO data managers within one year of collection of samples, in situ or experimental data. By default, data values will be held in a Private CZO Repository**, but metadata will be made public and will provide full attribution to the Dataset Creators†.

    2. Release data to public within 2 years. CZO Dataset Creators will be encouraged after one year to release data for public access. Dataset Creators may chose to publish or release data sooner.

    3. Request, in writing, data privacy up to 4 years. CZO PIs will review short written applications to extend data privacy beyond 2 years and up to 4 years from time of collection. Extensions beyond 3 years should not be the norm, and will be granted only for compelling cases.

    4. Consult with creators of private CZO datasets prior to use. In order to enable the collaborative vision of the CZO program, data in private CZO repositories will be available to other investigators and collaborators within that CZO. Releasing or publishing any derivative of such private data without explicit consent from the dataset creators will be considered a serious scientific ethics violation.

    * CZO Data Products. Defined as data collected with any monetary or logistical support from a CZO. Logistical support includes the use of any CZO sensors, sampling infrastructure, equipment, vehicles, or labor from a supported investigator, student or staff person. CZO Data Products can acknowledge multiple additional sources of support.

    ** Private CZO Repository. Defined as a password-protected directory on each CZO’s data server. Files will be accessible by all investigators and collaborators within the given CZO and logins will be maintained by that local CZO’s data managers. Although data values will not be accessible by the public or ingested into any central data system (i.e. CUAHSI HIS), metadata will be fully discoverable by the public. This provides the dual benefit of giving attribution and credit to dataset creators and the CZO in general, while maintaining protection of intellectual property while publications are pending.

    † Dataset Creators. Defined as the people who are responsible for designing, collecting, analyzing and providing quality assurance for a dataset. The creators of a dataset are analogous to the authors of a publication, and datasets should be cited in an analogous manner following the emerging international guidelines described at

CZO Field Areas


CZO Authors