Dataset Listing

Johnston Draw - Soil Survey - Predicting Soil Thickness (2014-2016)

A simple empirical model predicts soil thickness at any location within a catchment using high-resolution digital elevation models and a limited set of soil thickness measurements.

Variables:  elevation, thickness of mobile regolith (TMR), curvature, soil depth

Standard Variables:  Curvature|Elevation|Depth, soil

Date Range:  (2014-2016. approximate)

Dataset Creators/Authors:  Patton, N.R.; Lohse, K.A.; Godsey, S.E.; Seyfried, M.S.; Crosby, B.T.

Contact:  Dr. Kathleen Lohse (

Field Area:   Reynolds Creek Experimental Watershed

Keywords & XML
  • Description

    Soil thickness is a fundamental variable in many earth science disciplines but difficult to predict. We find a strong inverse linear relationship between soil depth and hillslope curvature (r2=0.89, RMSE=0.17 m) at a field site in Idaho. Similar relationships are present across a diverse data set, although the slopes and y-intercepts vary widely. We show that the slopes of these functions vary with the standard deviations (SD) in catchment curvatures and that the catchment curvature distributions are centered on zero. Our simple empirical model predicts the spatial distribution of soil depth in a variety of catchments based only on high-resolution elevation data and a few soil depths. Spatially continuous soil depth datasets enable improved models for soil carbon, hydrology, weathering and landscape evolution.
  • Keywords

    Reynolds Creek, soil thickness, mobile regolith, TMR, DEM, curvature

    XML Metadata

    XML is in ISO-19115 geographic metadata format, compatible with ESRI Geoportal Server.

  • Citation for This Dataset

    Patton, Nicholas R.; Lohse, Kathleen A.; Godsey, Sarah E.; Seyfried, Mark S.; and Crosby, Benjamin T.. (2017). Dataset for Predicting Soil Thickness on Soil Mantled Hillslopes [Data set]. BSU ScholarWorks, Boise State University,

    Citation for This Webpage

    Patton, N.R.; Lohse, K.A.; Godsey, S.E.; Seyfried, M.S.; Crosby, B.T. (2016). "CZO Dataset: Johnston Draw - Soil Survey (2014-2016) - Predicting Soil Thickness." Retrieved 19 Oct 2019, from


Johnston Draw, Reynolds Creek - Soil Data

(k/3/)   Data Level 1,   DOI: 10.18122/B2PM69

Data Use Policy
Data Sharing Policy
  • Data Use Policy

    DRAFT v.0.4.0

    1. Use our data freely. All CZO Data Products* except those labelled Private** are released to the public and may be freely copied, distributed, edited, remixed, and built upon under the condition that you give acknowledgement as described below. Non-CZO data products — like those produced by USGS or NOAA — have their own use policies, which should be followed.

    2. Give proper citation and acknowledgement. Publications, models and data products that make use of these datasets must include proper citation and acknowledgement. Most importantly, provide a citation in a similar way as a journal article (i.e. author, title, year of publication, name of CZO “publisher”, edition or version, and URL or DOI access information. See Also include at least a brief acknowledgement such as: “Data were provided by the NSF-supported Southern Sierra Critical Zone Observatory” (replace with the appropriate observatory name).

    3. Let us know how you will use the data. The dataset creators would appreciate hearing of any plans to use the dataset. Consider consultation or collaboration with dataset creators.

    *CZO Data Products.  Defined as a data collected with any monetary or logistical support from a CZO.

    **Private. Most private data will be released to the public within 1-2 years, with some exceptionally challenging datasets up to 4 years. To inquire about potential earlier use, please contact us.

  • Data Sharing Policy

    DRAFT v.0.2.5

    All CZO investigators and collaborators who receive material or logistical support from a CZO agree to:

    1. Share data privately within 1 year. CZO investigators and collaborators agree to provide CZO Data Products* — including data files and metadata for raw, quality controlled and/or derived data — to CZO data managers within one year of collection of samples, in situ or experimental data. By default, data values will be held in a Private CZO Repository**, but metadata will be made public and will provide full attribution to the Dataset Creators†.

    2. Release data to public within 2 years. CZO Dataset Creators will be encouraged after one year to release data for public access. Dataset Creators may chose to publish or release data sooner.

    3. Request, in writing, data privacy up to 4 years. CZO PIs will review short written applications to extend data privacy beyond 2 years and up to 4 years from time of collection. Extensions beyond 3 years should not be the norm, and will be granted only for compelling cases.

    4. Consult with creators of private CZO datasets prior to use. In order to enable the collaborative vision of the CZO program, data in private CZO repositories will be available to other investigators and collaborators within that CZO. Releasing or publishing any derivative of such private data without explicit consent from the dataset creators will be considered a serious scientific ethics violation.

    * CZO Data Products. Defined as data collected with any monetary or logistical support from a CZO. Logistical support includes the use of any CZO sensors, sampling infrastructure, equipment, vehicles, or labor from a supported investigator, student or staff person. CZO Data Products can acknowledge multiple additional sources of support.

    ** Private CZO Repository. Defined as a password-protected directory on each CZO’s data server. Files will be accessible by all investigators and collaborators within the given CZO and logins will be maintained by that local CZO’s data managers. Although data values will not be accessible by the public or ingested into any central data system (i.e. CUAHSI HIS), metadata will be fully discoverable by the public. This provides the dual benefit of giving attribution and credit to dataset creators and the CZO in general, while maintaining protection of intellectual property while publications are pending.

    † Dataset Creators. Defined as the people who are responsible for designing, collecting, analyzing and providing quality assurance for a dataset. The creators of a dataset are analogous to the authors of a publication, and datasets should be cited in an analogous manner following the emerging international guidelines described at