Dataset Listing

Puerto Rico - Geomorphology - Stream channel geomorphology (2009-2012)

Channel Morphology Surveys

Variables:  https://www.sas.upenn.edu/lczodata/content/channel-morphology-surveys

Date Range:  (2009-2012)

Dataset Creators/Authors:  Phillips, C.B.

Contact:  Colin Philips, University of Pensylvania, colinp@sas.upenn.edu

Field Area:   Northeastern Puerto Rico and the Luquillo Mountains

Description
Keywords & XML
Citation
  • Description

    Key science question:
    • How does stream channel morphology respond to the addition of impervious cover in a humid tropical region adjusted to frequent large storms?

    Urbanization through the addition of impervious cover can alter catchment hydrology, often resulting in increased peak flows during floods. This phenomenon and the resulting impact on stream channel morphology is well documented in temperate climatic regions, but not well documented in the humid tropics where urbanization is rapidly occurring. This study investigates the long-term effects of urbanization on channel morphology in the humid sub-tropical region of Puerto Rico, an area characterized by frequent high-magnitude flows, and steep coarse-grained rivers. Grain size, low-flow channel roughness, and the hydraulic geometry of streams across a land-use gradient that ranges from pristine forest to high density urbanized catchments are compared. In areas that have been urbanized for several decades changes in channel features were measurable, but were smaller than those reported for comparable temperate streams. Decades of development has resulted in increased fine sediment and anthropogenic debris in urbanized catchments. Materials of anthropogenic origin comprise an average of 6% of the bed material in streams with catchments with 15% or greater impervious cover. At-a-station hydraulic geometry shows that velocity makes up a larger component of discharge for rural
    channels, while depth contributes a larger component of discharge in urban catchments. The average bank-full cross-sectional area of urbanized reaches was 1.5 times larger than comparable forested reaches, and less than the world average increase of 2.5. On average, stream width at bank-full height did not change with urbanization while the world average increase is 1.5 times. Overall, this study indicates that the morphologic changes that occur in response to urban runoff are less in channels that are already subject to frequent large magnitude storms. Furthermore, this study suggests that developing regions in the humid tropics shouldn’t rely on temperate analogues to determine the magnitude of impact of urbanization on stream morphology.
  • Keywords

    Geomorphology, Urbanization, Streams

    XML Metadata

    http://criticalzone.org/national/data/xml-metadata-test/2631/

    XML is in ISO-19115 geographic metadata format, compatible with ESRI Geoportal Server.

  • Citation for This Dataset

    Phillips, C.B.Channel Morphology Surveys. 2013. https://www.sas.upenn.edu/lczodata/content/stream-channel-response-urbanization-humid-tropical-region-ne-puerto-rico

    Citation for This Webpage

    Phillips, C.B. (2012). "CZO Dataset: Puerto Rico - Geomorphology (2009-2012) - Stream channel geomorphology." Retrieved 24 Sep 2017, from http://criticalzone.org/national/data/dataset/2631/

Data

Puerto Rico - Stream Channel 2009-2012

(veys)   Data Level 1

Data Use Policy
Data Sharing Policy
  • Data Use Policy

    DRAFT v.0.4.0

    1. Use our data freely. All CZO Data Products* except those labelled Private** are released to the public and may be freely copied, distributed, edited, remixed, and built upon under the condition that you give acknowledgement as described below. Non-CZO data products — like those produced by USGS or NOAA — have their own use policies, which should be followed.

    2. Give proper citation and acknowledgement. Publications, models and data products that make use of these datasets must include proper citation and acknowledgement. Most importantly, provide a citation in a similar way as a journal article (i.e. author, title, year of publication, name of CZO “publisher”, edition or version, and URL or DOI access information. See http://www.datacite.org/whycitedata). Also include at least a brief acknowledgement such as: “Data were provided by the NSF-supported Southern Sierra Critical Zone Observatory” (replace with the appropriate observatory name).

    3. Let us know how you will use the data. The dataset creators would appreciate hearing of any plans to use the dataset. Consider consultation or collaboration with dataset creators.

    *CZO Data Products.  Defined as a data collected with any monetary or logistical support from a CZO.

    **Private. Most private data will be released to the public within 1-2 years, with some exceptionally challenging datasets up to 4 years. To inquire about potential earlier use, please contact us.

  • Data Sharing Policy

    DRAFT v.0.2.5

    All CZO investigators and collaborators who receive material or logistical support from a CZO agree to:

    1. Share data privately within 1 year. CZO investigators and collaborators agree to provide CZO Data Products* — including data files and metadata for raw, quality controlled and/or derived data — to CZO data managers within one year of collection of samples, in situ or experimental data. By default, data values will be held in a Private CZO Repository**, but metadata will be made public and will provide full attribution to the Dataset Creators†.

    2. Release data to public within 2 years. CZO Dataset Creators will be encouraged after one year to release data for public access. Dataset Creators may chose to publish or release data sooner.

    3. Request, in writing, data privacy up to 4 years. CZO PIs will review short written applications to extend data privacy beyond 2 years and up to 4 years from time of collection. Extensions beyond 3 years should not be the norm, and will be granted only for compelling cases.

    4. Consult with creators of private CZO datasets prior to use. In order to enable the collaborative vision of the CZO program, data in private CZO repositories will be available to other investigators and collaborators within that CZO. Releasing or publishing any derivative of such private data without explicit consent from the dataset creators will be considered a serious scientific ethics violation.

    * CZO Data Products. Defined as data collected with any monetary or logistical support from a CZO. Logistical support includes the use of any CZO sensors, sampling infrastructure, equipment, vehicles, or labor from a supported investigator, student or staff person. CZO Data Products can acknowledge multiple additional sources of support.

    ** Private CZO Repository. Defined as a password-protected directory on each CZO’s data server. Files will be accessible by all investigators and collaborators within the given CZO and logins will be maintained by that local CZO’s data managers. Although data values will not be accessible by the public or ingested into any central data system (i.e. CUAHSI HIS), metadata will be fully discoverable by the public. This provides the dual benefit of giving attribution and credit to dataset creators and the CZO in general, while maintaining protection of intellectual property while publications are pending.

    † Dataset Creators. Defined as the people who are responsible for designing, collecting, analyzing and providing quality assurance for a dataset. The creators of a dataset are analogous to the authors of a publication, and datasets should be cited in an analogous manner following the emerging international guidelines described at http://www.datacite.org/whycitedata.